Abstract:
Provided is a wireless power transmission device to reduce an electromagnetic wave except for a signal to be transmitted during wireless power transmission, the wireless power transmission device including a transmitter configured to generate a magnetic field by inputting a high-frequency power signal generated by a transmission circuit into a first coil, a receiver configured to generate an induced current by allowing the generated magnetic field to pass through a second coil, and a reducer configured to reduce a harmonic component of the high-frequency power signal using a third coil inserted on a path between the transmitter and the receiver.
Abstract:
A device for controlling exposure of electromagnetic waves from a base station collects a power value received from at least one base station together with position information using a plurality of terminals in a controlled area; maps the received power value collected from the terminals on a plurality of subareas in the controlled area based on position information collected from the terminals; calculates a power density for respective frequency bandwidths in the respective subareas by using the received power value of the terminals provided in the respective subareas; and calculates a specific absorption rate of electromagnetic waves in a human body in the respective subareas by using a power density value for respective frequency bandwidths in the respective subareas.
Abstract:
Disclosed is a method for allocating a resource of a terminal. The method includes: receiving downlink data from a base station; and allocating a resource for a device-to-device communication to a sub-frame by considering a hybrid ARQ (HARQ) transmission delay with respect to the received downlink data.
Abstract:
Provided is an energy charging apparatus including a transponder configured to transmit and receive radio energy, and a resonator configured to transmit the radio energy transmitted from the transponder to at least one external device and transmit the radio energy received from the at least one external device to the transponder, wherein each of the transponder and the resonator is provided in a form of a single module.
Abstract:
Disclosed is an analyzing apparatus of a junction of a coaxial probe for measuring permittivity, including: a first calculation module which calculates a first expression for a field of a first area by using an Eigenfunction expansion method; a second calculation module which calculates a second expression for a field of a second area contacting the first area by using an associated Weber transform integral method; a simultaneous equation calculation module which calculates simultaneous equations by using the first expression and the second expression; and an admittance calculation module which calculates admittance for a junction area including the first area and the second area by using the simultaneous equations.
Abstract:
A method of providing an amount of exposure to electromagnetic waves, and a user terminal are provided. The method may include receiving a signal of each of a plurality of wireless services, extracting a measured electric field and a reference level of electric field strength from a signal associated with each of the plurality of wireless services, and determining an exposure index of each of the plurality of wireless services, based on the measured electric field and the reference level of electric field strength, the exposure index being measured outside a body of a user.
Abstract:
An apparatus for self-examining whether a breast tissue is abnormal includes an examination checker configured to transmit a microwave to one side of an examinee's breast, receive the microwave that has passed through the breast and calculate a value in the microwave reception of the received microwave. Further, the apparatus includes a self-examination device configured to analyze the value in the microwave reception received from the examination checker and examines whether the breast is abnormal.
Abstract:
A method of calculating an electromagnetic wave, includes measuring an electromagnetic wave emitted from an electronic device using an electromagnetic-wave scanner; and receiving the electromagnetic wave as input to detect an electromagnetic wave value in a proximity plane at a prescribed first distance from the electronic device. Further, the method includes calculating an electromagnetic wave at a point by a second distance from the electronic device using the electromagnetic wave value.
Abstract:
Provided is a method of sensing a radio wave in diagnostic imaging of breast cancer, including arranging a plurality of transmitting and receiving antennas along a periphery of a breast, transmitting a radio wave signal from at least one first antenna among the plurality of transmitting and receiving antennas, receiving a scattered wave signal for the radio wave signal from the remaining antennas, other than the first antenna, among the plurality of transmitting and receiving antennas, and rotating the plurality of transmitting and receiving antennas by a predetermined angle.