Abstract:
In one embodiment, a control device associated with a wireless network of a given location determines a reference quality of location readings between access points and client devices based on using substantially all of an available wireless communication bandwidth. The control device may then determine channel state information (CSI) between the client devices and access points for each orthogonal frequency-division multiple access (OFDMA) resource unit (RU), and selects a subset of RUs for allocation to each respective client device, based on the subset of RUs allocated to each respective client device i) surpassing a determined threshold of certain parameters of the CSI, while also ii) providing a minimum quality of a location reading based on using only the subset of RUs as compared to the reference quality of location readings. The control device may then allocate the selected subset of RUs to each respective client device for location-preserving OFDMA-signaling-based communication.
Abstract:
A plurality of first wireless devices monitor a ranging exchange of transmissions between a target wireless device and a second wireless device in order to record for each of the plurality of first wireless devices a time of reception of a first transmission that is sent from the second wireless device to the target wireless device and a time of reception of a second transmission that is sent from the target wireless device to the second wireless device. Using a timing error computed from the estimated location, a modification is made of the time of transmission of the first transmission to produce a first modified timestamp and of the time of reception of the second transmission to produce a second modified timestamp. A ranging measurement is computed of the target wireless device relative to the second wireless device using the first modified timestamp and the second modified timestamp.
Abstract:
In a wireless local are network, each of multiple access points, in a high density deployment, are configured to suppress co-channel interference. A first access point having a plurality of antennas beamforms a transmission to a wireless client device within a null-space or with the weakest singular eigenmodes of a wireless channel between the first access point and at least one co-channel second access point. Techniques are presented herein for situations in which any given access point has two or more co-channel access points. In addition, an access point may perform receive side suppression with respect to a transmission (made by a co-channel access point to one of its associated wireless client devices) that is received from that co-channel access point.