Abstract:
In an example embodiment, there is described herein a location based detection technique that determines whether multiple requests from different addresses, such as a Layer 2 MAC (Media Access Control) address and/or layer 3 IP (Internet Protocol) address are being sent form a single device. In particular embodiments, if the device sends more than a predefined threshold number of requests, those requests can be ignored and/or denied.
Abstract:
In an example embodiment, an apparatus comprising a transceiver configured to send and receive data and logic coupled to the transceiver. The logic is configured to determine from a signal received by the transceiver whether an associated device sending the signal supports a protocol for advertising available services. The logic is configured to send a request for available services from the associated device via the transceiver responsive to determining the associated device supports the protocol. The logic is configured to receive a response to the request via the transceiver, the response comprising at least one service advertisement and a signature. The logic is configured to validate the response by confirming the signature.
Abstract:
The present technology provides for receiving communications at an authentication service, and the communication is indicative of a change in a security posture of an authenticated session between a user device and a secure service. The authentication service can then determine that the change in the security posture of the authenticated session impacts the trust level associated with the user device and causes the trust level to fall below the threshold. The authentication service can then send an enforcement signal to a security agent on a network device that provides remedial actions that a user can undertake to improve the security posture of the authenticated session.
Abstract:
Techniques are presented herein for engagement and disengagement of Transport Layer Security proxy services with encrypted handshaking. In one embodiment, a first initial message of a first encrypted handshaking procedure for a first secure communication session between a first device and a second device is intercepted at a proxy device. The first initial message includes first key exchange information for encrypting the first encrypted handshaking procedure. A copy of the first initial message is stored at the proxy device. A second initial message of a second encrypted handshaking procedure for a second secure communication session between the proxy device and the second device is sent from the proxy device to the second device. The second initial message includes second key exchange information for encrypting the second encrypted handshaking procedure. The proxy device determines, based on the second encrypted handshaking procedure, whether to remain engaged or to disengage.
Abstract:
Systems, methods, and computer-readable media for assessing reliability and trustworthiness of devices across domains. Attestation information for an attester node in a first domain is received at a verifier gateway in the first domain. The attestation information is translated at the verifier gateway into translated attestation information for a second domain. Specifically, the attestation information is translated into translated attested information for a second domain that is a different administrative domain from the first domain. The translated attestation information can be provided to a verifier in the second domain. The verifier can be configured to verify the trustworthiness of the attester node for a relying node in the second domain by identifying a level of trust of the attester node based on the translated attestation information.
Abstract:
In one embodiment, a processor of a vehicle predicts a state of the vehicle using a behavioral model. The model is configured to predict the state based in part on one or more state variables that are available from one or more sub-systems of the vehicle and indicative of one or more physical characteristics of the vehicle. The processor computes a representation of a difference between the predicted state of the vehicle and a measured state of the vehicle indicated by one or more state variables available from the one or more sub-systems of the vehicle. The processor detects a malicious intrusion of the vehicle based on the computed representation of the difference between the predicted and measured states of the vehicle exceeding a defined threshold. The processor initiates performance of a mitigation action for the detected intrusion, in response to detecting the malicious intrusion of the vehicle.
Abstract:
Techniques are presented herein for engagement and disengagement of Transport Layer Security proxy services with encrypted handshaking. In one embodiment, a first initial message of a first encrypted handshaking procedure for a first secure communication session between a first device and a second device is intercepted at a proxy device. The first initial message includes first key exchange information for encrypting the first encrypted handshaking procedure. A copy of the first initial message is stored at the proxy device. A second initial message of a second encrypted handshaking procedure for a second secure communication session between the proxy device and the second device is sent from the proxy device to the second device. The second initial message includes second key exchange information for encrypting the second encrypted handshaking procedure. The proxy device determines, based on the second encrypted handshaking procedure, whether to remain engaged or to disengage.
Abstract:
In one example embodiment, a network-connected device provides or obtains one or more computer network communications protected by a key. The network-connected device determines a count of the one or more computer network communications according to one or more properties of the one or more computer network communications. Based on the count of the one or more computer network communications, the network-connected device computes an information entropy of the key. Based on the information entropy of the key, the network-connected device dynamically generates a predicted threat level of the key.
Abstract:
In one embodiment, a device in a network receives node information regarding a plurality of nodes that are to join the network. The device determines network formation parameters based on the received node information. The network formation parameters are indicative of a network join schedule and join location for a particular node from the plurality of nodes. The device generates, according to the network join schedule, a join invitation for the particular node based on the network formation parameters. The join invitation allows the particular node to attempt joining the network at the join location via a specified access point. The device causes the sending of one or more beacons via the network that include the join invitation to the particular node. The particular node attempts to join the network via the specified access point based on the one or more beacons.
Abstract:
In one embodiment, functionality is disclosed for commissioning a target device based, at least in part, on providing identifying information that identifies a target device, where that identifying information is configured to be included in a request for authorization to commission the target device, and that request for authorization to commission the target device comprises one or more requested commissioning actions; receiving a commissioning authorization, where the commissioning authorization comprises information regarding one or more authorized commissioning actions for which a license is available, where the one or more authorized commissioning actions were selected from among the one or more requested commissioning actions; and performing the one or more authorized commissioning actions.