Abstract:
Presented herein are techniques performed in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes the respective network nodes in a service path. At a network node, an indication is received of a failure or degradation of one or more service functions or applications applied to traffic at the network node. Data descriptive of the failure or degradation is generated. A previous service hop network node at which a service function or application was applied to traffic in the service path is determined. The data descriptive of the failure or degradation is communicated to the previous service hop network node.
Abstract:
Presented herein are techniques for use in a network environment that includes one or more service zones, each service zone including at least one instance of an in-line application service to be applied to network traffic and one or more routers to direct network traffic to the at least one service, and a route target being assigned to a unique service zone to serve as a community value for route import and export between routers of other service zones, destination networks or source networks via a control protocol. An edge router in each service zone or destination network advertises routes by its destination network prefix tagged with its route target. A service chain is created by importing and exporting of destination network prefixes by way of route targets at edge routers of the service zones or source networks.
Abstract:
In one embodiment, a system and method are disclosed for sending a request and receiving a reply. The request contains a network service header including a flow label field and a target index field. The flow label field contains a set of available flow labels. The target index field includes a value indicating a target node. The reply contains information indicating which of the flow labels can be used to route a packet to each of the next hop nodes downstream from the device that sent the reply. This process can be repeated for other nodes on a path, and other paths in a service topology layer. The information determined by this process can be used to perform other necessary functionalities at the service topology layer.
Abstract:
Presented herein are techniques performed in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes the respective network nodes in a service path. At a network node, an indication is received of a failure or degradation of one or more service functions or applications applied to traffic at the network node. Data descriptive of the failure or degradation is generated. A previous service hop network node at which a service function or application was applied to traffic in the service path is determined. The data descriptive of the failure or degradation is communicated to the previous service hop network node.
Abstract:
Various systems and methods for determining whether to allow or continue to allow access to a protected data asset are disclosed herein. For example, one method involves receiving a request to access a protected data asset, wherein the request is received from a first user device; determining whether to grant access to the protected data asset, wherein the determining comprises evaluating one or more criteria associated with the first user device, and the criteria comprises first information associated with a first policy constraint; and in response to a determination that access to the protected data asset is to be granted, granting access to the protected data asset.
Abstract:
Presented herein are service-function chaining techniques. In one example, a service controller in a network comprising a plurality of service nodes receives one is configured to identify one or more service-functions hosted by each of the service nodes. The service controller defines a service-function chain in terms of service-functions to be applied to traffic in the network and provides information descriptive of the service-function chain to a classifier node.
Abstract:
Presented herein are techniques performed in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes the respective network nodes in a service path. At a network node, an indication is received of a failure or degradation of one or more service functions or applications applied to traffic at the network node. Data descriptive of the failure or degradation is generated. A previous service hop network node at which a service function or application was applied to traffic in the service path is determined. The data descriptive of the failure or degradation is communicated to the previous service hop network node.
Abstract:
Techniques are provided to decouple service chain structure from the underlying network forwarding state and allow for data plane learning of service chain forwarding requirements and any association between services function state requirements and the forward and reverse forwarding paths for a service chain. In a network comprising a plurality of network nodes each configured to apply a service function to traffic that passes through the respective network node, a packet is received at a network node. When the network node determines that the service function it applies is stateful, it updates context information in a network service header of the packet to indicate that the service function applied at the network node is stateful and that traffic for a reverse path matching the classification criteria is to be returned to the network node.
Abstract:
A plurality of network nodes are deployed in a network, each network node configured to apply a service function to traffic that passes through the respective network nodes. A controller generates information for a service chain that involves application to traffic of one or more service functions at corresponding ones of the plurality of network nodes along a forward path through the one or more network nodes. The controller identifies one or more of the service functions within the service chain that is stateful. When one or more of the service functions of the service chain is stateful, the controller generates information for a reverse path through the one or more service nodes for the one or more stateful service functions. The controller binds a forward chain identifier for the forward path with a reverse chain identifier for the reverse path for the service chain.
Abstract:
Presented herein are techniques useful in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes through the respective network nodes. A network node receives packets encapsulated in a service header that includes information defining a variable set of context headers stacked into an association of metadata that is relevant to one or more service functions within a service path comprised of one or more network nodes. The network node interprets a forwarding state and a next-hop network node for the service path from the service header, and determines a service action or associated metadata from the set of context headers.