Abstract:
Prism-coupling systems and methods for characterizing large depth-of-layer waveguides are disclosed. The systems and methods utilize a coupling prism having a coupling angle α having a maximum coupling angle αmax at which total internal reflection occurs. The prism angle α is in the range 0.81αmax≦α≦0.99αmax. This configuration causes the more spaced-apart lower-order mode lines to move closer together and the more tightly spaced higher-order mode lines to separate. The adjusted mode-line spacing allows for proper sampling at the detector of the otherwise tightly spaced mode lines. The mode-line spacings of the detected mode spectra are then corrected via post-processing. The corrected mode spectra are then processed to obtain at least one characteristic of the waveguide.
Abstract:
A substrate for a display article is described herein including (a) a primary surface; and (b) a textured region disposed at the primary surface, the textured region comprising: (i) one or more higher surfaces residing at a higher mean elevation parallel to a base-plane disposed below the textured region extending through the substrate; (ii) one or more lower surfaces residing at a lower mean elevation parallel to the base-plane; and (iii) surface features providing at a least a portion of either or both of (i) the one or more higher surfaces and (ii) the one or more lower surfaces. The surface features can include larger surface features and smaller surface features, either or both providing one or more surfaces of the substrate that reside at one or more intermediate mean elevations parallel to the base-plane between the higher mean elevation and the lower mean elevation.
Abstract:
Novel backlighting units (BLU) for use with LCD panel are disclosed. Such BLUs have direct lighting configuration utilizing blue LED as light source and have quantum dots (QDs) integrated into the architecture of the BLU thus forming thin BLUs that efficiently convert the blue source light into white light while achieving enhanced uniformity in brightness of the white light.
Abstract:
A substrate for a display article includes: a primary surface; a textured region on at least a portion of the primary surface, the textured region comprising surface features that reflect a random distribution, each of the surface features comprising a perimeter that is parallel to a base-plane extending through a thickness of the substrate below the textured region, wherein the perimeter is elliptical. The textured region can further include (i) one or more higher surfaces residing at a higher mean elevation from the base-plane and (ii) one or more lower surfaces residing at a lower mean elevation from the base-plane that is closer to the base-plane than the higher mean elevation. The higher mean elevation can differ from the lower mean elevation by a distance within a range of 0.05 μm to 0.70 μm.
Abstract:
A light apparatus can comprise a light source and a light guide plate, which can further comprise a major surface comprising a plurality of grooves. Each groove of the plurality of grooves may comprise a first surface and an opposed second surface. Each groove can have a maximum depth that may be defined between the second major surface and abase of the corresponding groove. In some embodiments, one or more surfaces of each groove may comprise a first convex portion. In other embodiments, the maximum depth of each groove of the plurality of grooves can be from about 1 micrometer to about 50 micrometers. In still other embodiments, the light apparatus may be used to direct light out of the light guide plate with a peak radiance oriented from 0° to 30° from a direction normal to the first major surface of the light guide plate.
Abstract:
Glass articles and glass light guide plates are disclosed that can be used in a backlight unit suitable for use as an illuminator for liquid crystal display devices. The glass article comprises a glass sheet including a first major surface comprising a plurality of channels or elongate microstructures, which can be separated by a non-zero spacing, the glass sheet further comprising a second major surface opposite the first major surface, and at least one of the first major surface and the second major surface comprising light extraction features formed therein. The glass article can be a light guide plate part of a backlight unit including a plurality of light emitting diodes arranged in an array along at least one edge surface of the glass sheet.
Abstract:
According to one embodiment two-core optical fiber is provided for use in Brillouin distributed fiber sensor applications and systems. The two-core fiber includes a first and second core. Each core is configured to exhibit a Brillouin frequency shift greater than 30 Mhz relative to the other core. Further, each core possesses temperature and strain coefficients that differ from the other core. The cores can be configured to produce Brillouin frequency shift levels of at least 30 Mhz relative to one another. These differences in shift levels may be affected by adjustment of the material compositions, doping concentrations and/or refractive index profiles of each of the cores. These optical fibers may also be used in BOTDR- and BOTDA-based sensor systems and arrangements.
Abstract:
A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.
Abstract:
A backlight unit comprising a first optical component having a first major face and a second major face, a second optical component laminated having a third major face and a fourth major face, wherein the first and third major faces oppose each other, and a discontinuous bonding material deposited between the first and third major faces, the bonding material laminating the first and second optical components.
Abstract:
Disclosed herein are backlight units comprising a light guide plate (210), a light coupling unit (220) in contact with the light guide plate, and a light source (230) optically coupled to the first and second light incident edge surfaces. The backlight units may also comprise light recycling cavities by forming a reflector (240) on the edge surface (224) of the coupling unit opposing the incidence surface (221). Electronic, display, and lighting devices comprising such BLUs are further disclosed herein.