Abstract:
A composite has repeating domains of an inorganic glass and a polymer, such that the inorganic glass and the polymer each have a glass transition temperature (Tg) or softening temperature of less than 450° C., and at least 50% of the inorganic glass domains have a length of less than 30 μm as measured along at least one cross-sectional dimension.
Abstract:
A laminated or single layer glass cylinder and its method of making are disclosed. The laminated cylinder glass is a precursor component to enable making subsequent drawn tubing having high optical quality. The laminated cylinder glass may comprise a first layer of glass as a clad glass and a second layer of glass as a core glass. The second layer of glass may be bound to the first layer of glass. The second layer may have a higher CTE from about 5×10−7/° C. to about 100×10−7/° C. than the first layer of glass. The first layer and second layer of glass may have different softening points within about 200° C. of each other. In some embodiments, the first layer and second layer of glass may have different softening points from about 50° C. to about 200° C. of each other.
Abstract:
A hollow glass waveguide and related method are provided. The microwave waveguide includes a glass body including a first end, a second end, an outer glass surface extending between the first end and the second end, an inner glass surface defining a hollow channel that extends from the first end to the second end and a glass material between the outer surface and the inner surface. The microwave waveguide includes a layer of metal embedded in the glass body. The layer of metal surrounds the hollow channel when viewed in cross-section and extends between the first end and the second end of the glass body. The layer of metal is electrically conductive and the hollow channel is dimensioned such that microwaves introduced into the hollow channel are conducted along the hollow channel between the first end and the second end.
Abstract:
Methods of forming a glass tube are described. In one embodiment, the method includes heating a glass boule to a temperature above a glass transition temperature of the glass boule, drawing the glass tube from the glass boule in a vertically downward direction, and flowing a pressurized gas through a channel of the glass boule as the glass tube is drawn. The glass boule includes an outer surface defining an outer diameter of the glass boule and a channel extending through the glass boule defining an inner diameter of the glass boule. Drawing the glass tube decreases the outer diameter of the glass boule to an outer diameter of the glass tube and flowing the pressurized gas through the channel increases the inner diameter of the glass boule to an inner diameter of the glass tube. Glass boules, glass tubes, and apparatuses for making the same are also described.
Abstract:
An apparatus (10) for forming the outer layers of a glass laminate sheet comprises a reservoir (12), individual first (14a) and second (14b) distributors extending below and in fluid communication with the reservoir, and first (30a) and second (30b) slots positioned respectively at the bottom of the first and second distributors. The slots have a length, the distributors have sides and a middle, and the length of the slots on the sides of the distributors is desirably decreased relative to the length of the slots in the middle of the distributors. The apparatus is useful with a trough or isopipe (100) to provide clad glass streams to contact an over-flowing core glass on respective sides of the trough or isopipe.