Abstract:
In one embodiment, a capable node in a computer network may host a path computation element, receive one or more neighborhood discovery messages including neighborhood information from a plurality of nodes in the computer network, and compute a minimum spanning tree (MinTree) for the computer network based on the neighborhood information. The MinTree may divide the plurality of nodes in the computer network into a first subset of routing nodes and a second subset of host nodes. The first subset of routing nodes may form one or more interconnected paths of routing nodes within the MinTree, and each host node within the second subset of host nodes may be located within one hop of at least one routing node. The capable node may then communicate a MinTree message to the plurality of nodes in the computer network to build the MinTree by enabling routing on each routing node.
Abstract:
In one embodiment, a committed information rate (CR) prediction is received from a machine learning model that corresponds to a predicted average traffic rate supported by a network connection. A traffic shaping strategy is adjusted based on the CR prediction. A rate at which data is communicated over the network connection may be based on the traffic shaping policy. The effects of the adjusted traffic shaping strategy are also monitored. Feedback is further provided to the machine learning model based on the monitored effects of the adjusted traffic shaping strategy.
Abstract:
In one embodiment, a message instructing a particular node to act as a heartbeat relay agent is received at the particular node in a network. The particular node is selected to receive the message based on a centrality of the particular node. Heartbeat messages are then collected from child nodes of the particular node in the network. Based on the collected heartbeat messages, a heartbeat report is generated, and the report is transmitted to a collecting node in the network.
Abstract:
In one embodiment, a routing topology of a network including nodes interconnected by communication links is determined, and activity in the network is monitored to determine a normal behavior of the communication links. Weak communication links in the network that deviate from the determined normal behavior are detected, and it is then determined whether the weak communication links are spatially correlated based on the determined topology of the network. In response to the weak communication links being spatially correlated, a region of the network affected by the weak communication links is identified as a dark zone that is to be avoided when routing data packets in the network.
Abstract:
In one embodiment, a message is received at a caching node in a network including an indication of the message's urgency. The message is transmitted to child nodes of the caching node, and upon transmitting the message, a retransmission timer is initiated when the message is urgent, based on the indication of the message's urgency. Then, one or more acknowledgements of receipt of the transmitted message are received from one or more of the child nodes, respectively. Upon expiration of the retransmission timer, when it is determined that one or more of the child nodes did not receive the transmitted message based on the received acknowledgements, the message is retransmitted to the child nodes.
Abstract:
In one embodiment, a particular node in a shared-media communication network determines a resource level and in response to determining a trigger condition (e.g., that the resource level is below a threshold), the particular node enters a selective forwarding mode. In the selective forwarding mode, the particular node does not forward non-critical messages. The particular node also notifies one or more neighboring nodes in the shared-media communication network of the entered selective forwarding mode. In another embodiment, a node may receive from a neighboring node, an indication of having entered a selective forwarding mode, and in response the node may forward only critical messages to the neighboring node.
Abstract:
In one embodiment, a triggered reboot of a field area router (FAR) of a computer network is initiated, and gathered states of the FAR are saved. The nodes in the computer network are informed of the triggered reboot, and then feedback may be collected from the nodes in response to the triggered reboot. As such, it can be determined whether to complete the triggered reboot based on the feedback, and the FAR is rebooted in response to determining to complete the triggered reboot. In another embodiment, a node receives information about the initiated triggered reboot of the FAR, and determines whether it has critical traffic. If not, the node buffers non-critical traffic and indicates positive feedback in response to the triggered reboot, but if so, then the node continues to process the critical traffic and indicates negative feedback in response to the triggered reboot.
Abstract:
In one embodiment, techniques are shown and described relating to learning machine based detection of abnormal network performance. In particular, in one embodiment, a border router receives a set of network properties xi and network performance metrics Mi from a network management server (NMS), and then intercepts xi and Mi transmitted from nodes in a computer network of the border router. As such, the border router may then build a regression function F based on xi and Mi, and can detect one or more anomalies in the intercepted xi and Mi based on the regression function F. In another embodiment, the NMS, which instructed the border router, receives the detected anomalies from the border router.
Abstract:
In one embodiment, a request is received from a requesting node in a network to assist in distributing a task of the requesting node. Upon receiving the message, a capability to perform the task of one or more helping nodes in the network is evaluated, and a helping node of the one or more helping nodes is selected to perform the task based on the evaluated capability of the selected helping node. The distribution of the task is then authorized from the requesting node to the selected helping node.
Abstract:
In one embodiment, one or more monitoring nodes may monitor network traffic within a computer network, and dynamically identify one or more paths within the network that specifically require performance monitoring based on one or more traffic criteria triggered by the monitoring. The one or more paths may each include one or more path nodes. The one or more monitoring nodes may then request that the one or more path nodes initiate transmission of performance indicia, which may allow the one or more monitoring nodes to monitor the performance of the one or more paths based on the performance indicia received at the one or more monitoring nodes.