Abstract:
A process for increasing protein yield from biomass (beans, oilseeds, cereals, nuts, rice, soybeans, bran, etc.), as well as, for reducing the amount of chemical and biological reagents used in the process, involves application of multiple hydrodynamic cavitation treatments of a biomass suspension or other combination of biomass with solvents and reagents—in the preparation, extraction, and processing or the biomass and proteins. The biomass suspension is preferably subjected to at least three cavitation treatments in order to facilitate the crushing of biomass, splitting of fibers, and rupture of cell membranes, thereby increasing the mass transfer surface area and intensifying the extraction of protein and lipids. At the stage of washing and neutralization the protein solution may be subjected to a fourth cavitation treatment to obtain the purified protein.
Abstract:
A process for increasing protein yield from biomass (beans, oilseeds, cereals, nuts, rice, soybeans, bran, etc.), as well as, for reducing the amount of chemical and biological reagents used in the process, involves application of multiple hydrodynamic cavitation treatments of a biomass suspension or other combination of biomass with solvents and reagents—in the preparation, extraction, and processing or the biomass and proteins. The biomass suspension is preferably subjected to at least three cavitation treatments in order to facilitate the crushing of biomass, splitting of fibers, and rupture of cell membranes, thereby increasing the mass transfer surface area and intensifying the extraction of protein and lipids. At the stage of washing and neutralization the protein solution may be subjected to a fourth cavitation treatment to obtain the purified protein.
Abstract:
A system and method of the purification of drinking water, ethanol and alcohol beverages is based on the action of hydrodynamic cavitation processing of microbiological and chemical contaminants, micro particles and colloidal particles. The fluid flow moves at a high rate through a multi-stage cavitation device and filtration module to generate hydrodynamic cavitation features in the fluid flow. The cavitation features generate changes in the velocity, pressure, temperature, chemical composition and physical properties of the liquid. The cavitation features also prevent the deposition of contaminants upon and remove contaminants from the surface of the filter module, reduce the load on the filter elements and increase the life of the filter module.
Abstract:
A system and method of the purification of drinking water, ethanol and alcohol beverages is based on the action of hydrodynamic cavitation processing of microbiological and chemical contaminants, micro particles and colloidal particles. The fluid flow moves at a high rate through a multi-stage cavitation device and filtration module to generate hydrodynamic cavitation features in the fluid flow. The cavitation features generate changes in the velocity, pressure, temperature, chemical composition and physical properties of the liquid. The cavitation features also prevent the deposition of contaminants upon and remove contaminants from the surface of the filter module, reduce the load on the filter elements and increase the life of the filter module.
Abstract:
A system and method of the purification of drinking water, ethanol and alcohol beverages is based on the action of hydrodynamic cavitation processing of microbiological and chemical contaminants, micro particles and colloidal particles. The fluid flow moves at a high rate through a multi-stage cavitation device and filtration module to generate hydrodynamic cavitation features in the fluid flow. The cavitation features generate changes in the velocity, pressure, temperature, chemical composition and physical properties of the liquid. The cavitation features also prevent the deposition of contaminants upon and remove contaminants from the surface of the filter module, reduce the load on the filter elements and increase the life of the filter module.
Abstract:
A process for increasing alcohol yield from biomass (the form or agro- or forest residue, grains, hops, etc.), involving multiple hydrodynamic cavitation treatments of biomass filtrate—both before and after fermentation. Carbohydrates extracted from biomass are subjected to a first cavitation treatment to promote additional conversion into carbohydrates. The carbohydrates are then combined with bacterial species and nutrients, and allowed to ferment. The fermentation product is subjected to a second hydrodynamic cavitation treatment to promote further conversion of carbohydrates into bioalcohol. After distillation, the bioalcohol is subjected to a second hydrodynamic cavitation treatment to increase its purity.
Abstract:
A method for producing fatty acid alkyl esters from biolipids through transesterification and/or esterification reactions uses a flow-through cavitation device for generating cavitation bubbles in a fluidic reaction medium. The fluidic medium is passed through sequential compartments in the cavitation device having varying diameters and inner surface features to create localized reductions in fluid pressure thus vaporizing volatile alcohols and creating an increased surface area and optimized conditions for the reaction to occur at the gas-liquid interface around the bubbles.
Abstract:
A method for degumming and/or refining crude oil containing impurities involving mixing the crude oil with degumming agents, i.e., water or acid, and subjecting the mixture to flow-through, hydrodynamic cavitation processing. The cavitational processing transfers impurities in the crude oil to a water phase for easier separation. The water phase may be separated from the oil phase by commonly available separation methods.
Abstract:
A process for extracting carbohydrates from biomass and creating bioalcohol from the extracted carbohydrates. Subjecting the biomass to acid or alkali hydrolysis in a first hydrodynamic cavitation process. Filtering the first cavitated biomass to separate a first filtrate containing extracted carbohydrates. Fermenting the first filtrate to create a bioalcohol and separating the bioalcohol by distillation or similar process. Subjecting the biomass to enzymatic hydrolysis in a second hydrodynamic cavitation process. Filtering the second cavitated biomass to separate a second filtrate containing extracted carbohydrates. Fermenting the second filtrate to create a bioalcohol and separating the bioalcohol by distillation or similar process. The first and second filtrates may be combined and fermented in a single step.
Abstract:
A flow-through cavitation device having an elongated housing with an inlet and an outlet. An inner annular body and an outer annular body are concentrically and nestingly disposed in the elongated housing. The outer annular body is fixed relative to the housing and the inner annular body is rotatable about a longitudinal axis of the housing. Each annular body has a plurality of channels that pass therethrough. Rotation of the inner body relative to the outer body provides for selective alignment or misalignment of the plurality of channels to control fluid flow from the inlet to the outlet. The device may have a plurality of pairs of inner and outer annular bodies as described.