Electronic media retrieval
    23.
    发明授权

    公开(公告)号:US11681737B2

    公开(公告)日:2023-06-20

    申请号:US16843218

    申请日:2020-04-08

    Applicant: ADOBE INC.

    CPC classification number: G06F16/43 G06F16/438 G06F16/45 G06N3/04 G06N3/08

    Abstract: The present disclosure relates to a retrieval method including: generating a graph representing a set of users, items, and queries; generating clusters from the media items; generating embeddings for each cluster from embeddings of the items within the corresponding cluster; generating augmented query embeddings for each cluster from the embedding of the corresponding cluster and query embeddings of the queries; inputting the cluster embeddings and the augmented query embeddings to a layer of a graph convolutional network (GCN) to determine user embeddings of the users; inputting the embedding of the given user and a query embedding of the given query to a layer of the GCN to determine a user-specific query embedding; generating a score for each of the items based on the item embeddings and the user-specific query embedding; and presenting the items having the score exceeding a threshold.

    TEXT STYLE AND EMPHASIS SUGGESTIONS

    公开(公告)号:US20220300696A1

    公开(公告)日:2022-09-22

    申请号:US17805910

    申请日:2022-06-08

    Applicant: ADOBE INC.

    Abstract: Embodiments provide systems, methods, and computer storage media for text style suggestions and/or text emphasis suggestions. In an example embodiment, an electronic design application provides a text style suggestion tool that generates text style suggestions to stylize a selected text element based on the context of the design. A text emphasis tool allows a user to select a text element and generate text emphasis suggestions for which words should be emphasized with a different text styling. Various interaction elements allow the user to iterate through the suggestions. For example, a set of style suggestions may be mapped to successive rotational increments around a style wheel, and as the user rotates through the positions on the style wheel, a corresponding text style suggestion is previewed and/or applied.

    TEXT ADJUSTED VISUAL SEARCH
    25.
    发明申请

    公开(公告)号:US20220138247A1

    公开(公告)日:2022-05-05

    申请号:US17090150

    申请日:2020-11-05

    Applicant: ADOBE INC.

    Abstract: Embodiments of the technology described herein, provide improved visual search results by combining a visual similarity and a textual similarity between images. In an embodiment, the visual similarity is quantified as a visual similarity score and the textual similarity is quantified as a textual similarity score. The textual similarity is determined based on text, such as a title, associated with the image. The overall similarity of two images is quantified as a weighted combination of the textual similarity score and the visual similarity score. In an embodiment, the weighting between the textual similarity score and the visual similarity score is user configurable through a control on the search interface. In one embodiment, the aggregate similarity score is the sum of a weighted visual similarity score and a weighted textual similarity score.

    PROPAGATING MULTI-TERM CONTEXTUAL TAGS TO DIGITAL CONTENT

    公开(公告)号:US20220100791A1

    公开(公告)日:2022-03-31

    申请号:US17544689

    申请日:2021-12-07

    Applicant: Adobe Inc.

    Abstract: Systems, methods, and non-transitory computer-readable media are disclosed for determining multi-term contextual tags for digital content and propagating the multi-term contextual tags to additional digital content. For instance, the disclosed systems can utilize search query supervision to determine and associate multi-term contextual tags (e.g., tags that represent a specific concept based on the order of the terms in the tag) with digital content. Furthermore, the disclosed systems can propagate the multi-term contextual tags determined for the digital content to additional digital content based on similarities between the digital content and additional digital content (e.g., utilizing clustering techniques). Additionally, the disclosed systems can provide digital content as search results based on the associated multi-term contextual tags.

    MODEL-BASED SEMANTIC TEXT SEARCHING

    公开(公告)号:US20210326371A1

    公开(公告)日:2021-10-21

    申请号:US16849885

    申请日:2020-04-15

    Applicant: Adobe Inc.

    Abstract: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.

Patent Agency Ranking