Abstract:
A communication network is operated by identifying at least one potential hijack autonomous system (AS) that can be used to generate a corrupt routing path from a source AS to a destination AS. For each of the at least one potential hijack AS the following operations are performed: identifying at least one regional AS that is configured to adopt the corrupt routing path from the source AS to the destination AS and determining a reflector AS set such that, for each reflector AS in the set, a source AS to reflector AS routing path and a reflector AS to destination AS routing path do not comprise any of the at least one regional AS. A reflector AS is then identified that is common among the at least one reflector AS set responsive to performing the identifying and determining operations for each, of the at least one potential hijack AS.
Abstract:
Aspects of the subject disclosure may include, for example, training a first machine learning model based on a combination of labeled training data and unlabeled training data, the first machine learning model producing augmented training data, training a second machine learning model based on a combination of the labeled training data and the augmented training data, receiving, at a client device, customer information about a service degradation at a user equipment (UE) device of a customer in a cellular network, providing the customer information to the second machine learning model, receiving, at the client device, from the second machine learning model, information identifying a root cause of the service degradation, and modifying a network component of the cellular network or the UE device, based on the information identifying a root cause of the service degradation. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, categorizing users of a cellular network according to a plurality of user categories, identifying, by a machine learning model, a service degradation in the cellular network, identifying at least one affected user, the at least one affected user being affected by the service degradation, identifying one or more affected user categories including the at least one affected user, identifying potentially affected users, the potentially affected users being categorized according to the one or more affected user categories, and taking action to isolate the potentially affected users from the service degradation. Other embodiments are disclosed.
Abstract:
A method, a computer readable medium and an apparatus for optimizing a cellular network architecture are disclosed. For example, the method obtains network traffic data for a plurality of different endpoint device types, wherein the network traffic data comprises network traffic data for each of the plurality of different endpoint device types, and predicts a future traffic pattern for one of the plurality of different endpoint device types based on the network traffic data. The method then adjusts a parameter of the cellular network architecture in response to the future traffic pattern predicted for the one of the plurality of different endpoint device types.
Abstract:
Techniques for sharing a cellular network connection amongst multiple devices over a local area network are provided that reduce cellular network load during crowded events. In an aspect, a devices is configure to perform operations that include scanning an area for another device that has established a first wireless cellular connection with a cellular network device of a cellular network and that enables an indirect connection of the device to the cellular network device via a direct connection of the device to the other device via a local network device. The operations further include, in response to identifying the other device as a result of the scanning, sending a request to the other device to connect to the other device via the local network device and to receive the indirect connection to the cellular network device.
Abstract:
A method of placing prefix hijacking detection modules in a communications network includes selecting a set of candidate locations. For each candidate location, a detection coverage ratio with respect to a target Autonomous System is calculated. Based on the relative size of the coverage ratios, proposed locations for the prefix hijacking detection modules are determined.
Abstract:
Techniques for sharing a cellular network connection amongst multiple devices over a local area network are provided that reduce cellular network load during crowded events. In an aspect, a devices is configure to perform operations that include scanning an area for another device that has established a first wireless cellular connection with a cellular network device of a cellular network and that enables an indirect connection of the device to the cellular network device via a direct connection of the device to the other device via a local network device. The operations further include, in response to identifying the other device as a result of the scanning, sending a request to the other device to connect to the other device via the local network device and to receive the indirect connection to the cellular network device.
Abstract:
A device detects and diagnoses correlated anomalies of a network. The device includes an anomaly detection module receiving a first data stream including an event-series related to the network. The anomaly detection module executes at least one algorithm to detect a potential anomaly in the event-series. The device further includes a correlating module receiving a second data stream including other event-series related to the network. The correlating module determines whether the potential anomaly is false and determines whether the potential anomaly is a true anomaly.
Abstract:
A method includes determining, at a network routing device, an average packet drop rate for a plurality of aggregations of packet flows. The method also determines a threshold packet drop rate based on the average packet drop rate, a current packet drop rate for a select aggregation of the plurality of aggregations, and whether at least one packet flow of the select aggregation is potentially subject to a denial-of-service attack based on a comparison of the current packet drop rate to the threshold packet drop rate.
Abstract:
A communication network is operated by identifying at least one potential hijack autonomous system (AS) that can be used to generate a corrupt routing path from a source AS to a destination AS. For each of the at least one potential hijack AS the following operations are performed: identifying at least one regional AS that is configured to adopt the corrupt routing path from the source AS to the destination AS and determining a reflector AS set such that, for each reflector AS in the set, a source AS to reflector AS routing path and a reflector AS to destination AS routing path do not comprise any of the at least one regional AS. A reflector AS is then identified that is common among the at least one reflector AS set responsive to performing the identifying and determining operations for each, of the at least one potential hijack AS.