Abstract:
Various embodiments of the invention may use bitmaps to communicate channel quality index (CQI) information for multiple sub-channels in an orthogonal frequency division multiple access (OFDMA) wireless communications network. A base station may use bitmaps to report on whether the CQI information for each sub-channel has been under-reported or over-reported. A mobile station may use bitmaps to consolidate CQI information for multiple sub-channels into a single CQI set of parameters.
Abstract:
Methods and apparatus for allocating Walsh codes to support wireless connections over fundicated and supplemental channels are disclosed. In an exemplary embodiment, a Walsh code for an incoming call is selected from a first group of Walsh spaces if any of those Walsh spaces is capable of supporting the incoming call, and selecting a Walsh code from a second group otherwise. If the Walsh space from which the Walsh code is selected is from the second group, it is marked with a time stamp. The disclosed techniques reduce fragmentation in the overall Walsh space caused by random connection and disconnection from the wireless network.
Abstract:
Briefly, in accordance with one or more embodiments, a MAP may be used by a base station to allocate network users for one or more users in a wireless network using persistent scheduling. In the event one or more of the users does not successfully receive a MAP transmitted by the base station, the user may stop transmitting and/or receiving in order to minimize and/or avoid collision with transmissions from other users. The affected user may transmit an indication of the error in receiving the MAP to the base station, wherein the base station may retransmit the previously transmitted MAP to the affected user that did not successfully receive the MAP from the origination transmission.
Abstract:
Briefly, in accordance with one or more embodiments, HARQ retransmissions may be persistently scheduled so as to efficiently allocate network without requiring the HARQ retransmissions to be scheduled for every frame or nearly every frame. Furthermore, grouping of users may occur using a bitmap for the HARQ retransmissions using the same bitmap as used for scheduling of the original packet transmission or using a separate bitmap for the HARQ retransmissions. In the event one or more scheduled HARQ retransmissions are not needed, the base station is capable of reallocating the previously scheduled resources.
Abstract:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
Abstract:
Device, system, and method of multi-level feedback. For example, an apparatus includes: an estimator to estimate a likelihood of correctly decoding an incoming encoded Hybrid Automatic Repeat Request packet of an incoming wireless communication signal by one or more decoders of the apparatus; and a transmitter to transmit a multiple-bit representation of the likelihood of correctly decoding the incoming encoded Hybrid Automatic Repeat Request to a device that transmitted the incoming encoded Hybrid Automatic Repeat Request packet.
Abstract:
Various embodiments of the invention may use bitmaps to communicate channel quality index (CQI) information for multiple sub-channels in an orthogonal frequency division multiple access (OFDMA) wireless communications network. A base station may use bitmaps to report on whether the CQI information for each sub-channel has been under-reported or over-reported. A mobile station may use bitmaps to consolidate CQI information for multiple sub-channels into a single CQI set of parameters.
Abstract:
An apparatus and method provide MAC logic enabling the use of two or more reverse link rate controls at the same time in one or more sectors of a radio base station. That enables the base station to control reverse link loading via reverse link rate control, while assigning mobile stations to the type of reverse link rate control best suited to their needs. For example, the base station MAC logic may implement both a common rate controller that generates per-sector rate control commands, and a dedicated rate controller that generates per-user rate control commands and assign mobile stations having relatively lax reverse link service needs to the common rate controller, while assigning mobile stations having more demanding reverse link service requirements to the dedicated rate control. More than two rate controls can be implemented, and exemplary choices include per-user, per-sector, per-group, and scheduled rate control in any combination.
Abstract:
A method of allocating diversity codes to sectors in a mobile communication network achieves a favorable code balance for all mobile terminals a predetermined percentage of the time. The method comprises allocating diversity codes to each sector in a cluster of sectors for a first time period according to a diversity code pattern, rotating said diversity code pattern relative to said cluster, and allocating diversity codes to each sector in said cluster for a second time period according to said rotated diversity code pattern.
Abstract:
A mobile communication network comprises a plurality of access nodes, wherein each access node allocates mobile station identifiers to mobile stations from an assigned group of mobile station identifiers. The mobile station identifiers in each group have a common property that identifies the corresponding access node. The mobile station identifier may be used, for example, to locate session information for a mobile station when a mobile station moves between access nodes.