Abstract:
A wire insertion and connection structure includes a plurality of wires that extends in a substantially parallel manner. Each wire includes a conductor and an insulation layer enclosing the conductor. Each wire has an end forming an insertion end, and each conductor has a portion exposed outside the respective insertion end to form a conductive engagement section. The insertion ends of the wires are coupled to an insertion assisting unit. The insertion assisting unit forms a plurality of positioning slots, which is distributed in a surface of the insertion assisting unit in a substantially parallel manner and spaced from each other by insulation sections. The conductive engagement sections of the conductors are respectively positionable in the positioning slots, whereby when the insertion ends of the wires and the insertion assisting unit are inserted into a receiving compartment defined in a connector, the conductive engagement sections of the conductors of the wires are respectively positioned on and engaging metal conductive elements received and set inside the receiving compartment of the connector.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.
Abstract:
A foldable signal transmission cable assembly includes parallelly extended first and second cables, which are connected at opposite first and second ends by transverse first and second connecting sections, respectively, and have first and second connectors provided at the first end of the first cable and at the second end of the first or the second cable, respectively, to electrically connect to signal lines provided on the first and second cables and the first and second connecting sections. The first and second connecting sections may be bent along folding lines provided at middle points thereof, so as to turn and locate the second cable below the first cable. The first and second cables may be formed from a single-side, a double-side, a multisided, or a multilayer substrate, and may include a cluster section.
Abstract:
A structure of via hole of electrical circuit board includes an adhesive layer and a conductor layer that are formed after wiring is formed on a carrier board. At least one through hole extends in a vertical direction through the carrier board, the wiring, the adhesive layer, and the conductor layer and forms a hole wall surface. The conductor layer shows a height difference with respect to an exposed zone of the circuit trace in the vertical direction. A conductive cover section covers the conductor layer and the hole wall surface of the through hole. The carrier board is a single-sided board, a double-sided board, a multi-layered board, or a combination thereof, and the single-sided board, the double-sided board, and multi-layered board can be flexible boards, rigid boards, or composite boards combining flexible and rigid boards.
Abstract:
Disclosed is a flat signal transmission cable with bundling structure, including at least one flexible circuit. The flexible circuit includes a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of the flexible circuit to impose free and independent flexibility for bending to each clustered flat cable component. At least one bundling structure is formed on a lateral side edge of a predetermined clustered flat cable component of the cluster section of the flexible circuit. The bundling structure forms a fastening section. When the clustered flat cable components of the cluster section of the flexible circuit are stacked to form a bundled structure, the bundling structure bundles the plurality of clustered flat cable components and is secured by being fastened by the fastening section.
Abstract:
A flexible flat circuit cable includes first and second flexible circuit substrates extending in an extension direction. The first flexible circuit substrate has a first surface forming a first conductor layer and an insulation layer, and the second flexible circuit substrate has a first surface forming a second conductor layer and an insulation layer. A bonding material layer is applied at a predetermined section between the first flexible circuit substrate and the second flexible circuit substrate to bond the first and second flexible circuit substrates together in such a way to maintain a predetermined spacing distance between the first and second flexible circuit substrate and forming a gapped segment at sections where no bonding material is applied. The first and second flexible circuit substrates form a cluster section within the gapped segment, which has opposite ends respectively forming first and second connected sections each of which forms a connection plug or is provided with a connector.
Abstract:
A flexible flat circuit cable includes first and second flexible circuit substrates extending in an extension direction. The first flexible circuit substrate has a first surface forming a first conductor layer and an insulation layer, and the second flexible circuit substrate has a first surface forming a second conductor layer and an insulation layer. A bonding material layer is applied at a predetermined section between the first flexible circuit substrate and the second flexible circuit substrate to bond the first and second flexible circuit substrates together in such a way to maintain a predetermined spacing distance between the first and second flexible circuit substrate and forming a gapped segment at sections where no bonding material is applied. The first and second flexible circuit substrates form a cluster section within the gapped segment, which has opposite ends respectively forming first and second connected sections each of which forms a connection plug or is provided with a connector.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.
Abstract:
A shielded insertion and connection structure is provided for a flat cable connector, including a receiving housing and a hold-down member. The receiving housing forms a receiving compartment and two side walls formed at opposite ends of the receiving compartment. The hold-down member has opposite ends that respectively form pivot structures for pivotally coupling the hold-down member to the side walls and rotating between an open position and a holding position. The hold-down member is made of metal and the receiving housing is at least partly made of metal to form a conduction section, which is connected to a grounding terminal. When the hold-down member is at the open position and a circuit flat cable is inserted into the receiving compartment, the hold-down member is operated to depress down and hold the circuit flat cable and the hold-down member is put in electrical connection with the grounding terminal through the conduction section.