Abstract:
An integrated circuit package may include a semiconductor die, a heat spreader, and encapsulation material. The semiconductor die may contain an electronic circuit and exposed electrical connections to the electronic circuit. The heat spreader may be thermally-conductive and may have a first outer surface and a second outer surface substantially parallel to the first outer surface. The first outer surface may be affixed to all portions of a silicon side of the semiconductor die in a thermally-conductive manner. The encapsulation material may be non-electrically conductive and may completely encapsulate the semiconductor die and the heat spreader, except for the second surface of the heat spreader. The second surface of the heat spreader may be solderable and may form part of an exterior surface of the integrated circuit package.
Abstract:
Circuits and methods for converting a signal from analog to digital. A random number generator provides a random number to a memory. The memory is preconfigured to include codes of predetermined digital to analog (DAC) configurations that provide the maximum amount of DAC gradient suppression. At least one Flash reference generation DAC (FRGD) has an input coupled to the memory unit and an output providing a reference voltage level for its respective Flash comparator. The Flash comparators compare the analog input signal to their respective reference voltage and provide a digital output signal based on the comparison.
Abstract:
An anemometer and method for analyzing fluid flow is described. In one embodiment, a transistor sensor is heated by applying power to cause its base-emitter junction to rise from an ambient first temperature to a second temperature. The power is removed, and the Vbe is measured at intervals as the junction cools. The Vbe equates to a temperature of the junction. The temperature exponentially decreases, and the time constant of the decay corresponds to the fluid flow velocity. A best fit curve analysis is performed on the temperature decay curve, and the time constant of the exponential decay is derived by a data processor. A transfer function correlates the time constant to the fluid flow velocity. The transistor is thermally coupled to a metal rod heat sink extending from the package, and the characteristics of the rod are controlled to adjust the performance of the anemometer.
Abstract:
A poly-phase filter receives inphase input signals I and Ī and quadrature input signals Q and Q, and provides inphase output signals Iout and Iout and quadrature output signals Qout and Qout. The capacitance of each variable capacitor connected to the terminals providing inphase output signals Iout and Iout is and the capacitance of each variable capacitor connected to the terminals providing quadrature output signals Qout and Qout, are different in value, and preferably by twice a predetermined value. This is because adjustment to the capacitance values may be made to each set of variable capacitors by the predetermined value.
Abstract:
A device reduces its energy consumption using a relatively lower frequency and lower power secondary oscillator to maintain timing information when a higher frequency and higher power primary oscillator is inactivated. The secondary oscillator maintains timing information at a higher resolution than the period of the oscillator, so as to conserve synchronization when the higher frequency, higher power primary oscillator is inactivated. In some embodiments, a microsequencer is programmably configured to control an integrated radio receiver and transmitter using less power than an associated microprocessor would use to perform the same functions. In other embodiments, flexible event timing facilitates the merging of wake-up events to reduce the energy consumed by wake-up operations in the device.
Abstract:
A forward converter has a primary side containing a PWM controller for controlling switching of a power switch and has a secondary side coupled to the primary side via a transformer. The secondary side includes a forward transistor and a catch transistor. A secondary side switch controller controls switching of the forward transistor and the catch transistor without communication from the primary side. The secondary side switch controller detects the rising and falling of the voltages at the ends of the secondary winding to control the switching of the forward and catch transistors. A delay locked loop (DLL) is provided in the secondary side switch controller that turns on the catch transistor when the power switch is turned off and turns off the catch transistor at a predetermined time before the power switch is turned on. A separate circuit controls the catch transistor during a discontinuous mode.
Abstract:
An LED driver uses a positive-to-floating boost converter topology to generate a negative voltage −Vee relative to ground. The converter receives an input voltage. Vin from a power supply. One end of an output inductor is coupled to ground, and the other end of the inductor is coupled between a highside switch and a low side switch. The bottom terminal of the lowside switch generates −Vee. The anode end of an LED string is coupled to Vin and the cathode end is coupled to −Vee. The converter detects the LED current and regulates the switching duty cycle so that the LED current is equal to a target current. This is more efficient than coupling the anode end of an LED string to ground and the cathode end to −Vee. A conventional buck controller IC may be used.
Abstract:
In a method for controlling a current regulator for dimming an LED load, a dimming signal has a duty cycle that controls the LED ON-time and LED OFF time at a fixed frequency. The regulator is controlled by the dimming signal to only supply current to the LED load during the LED ON-time. The regulator includes an inductor. The inductor current at the end of an ON-time is detected and its value is stored. During the OFF-time, the inductor is pre-charged to the current level matching the stored value, while the regulator's feedback loop is frozen during the OFF-time to not change its feedback control signal. Upon the next ON-time, the regulator begins supplying current to the LED load with the pre-charged inductor current, so there is no initial decrease in the delivered LED current. Therefore, the current pulse magnitudes are constant even with very low duty cycles.
Abstract:
A circuit and method for wirelessly coupling an electrical energy between an electrical energy source and at least one load is provided. The circuit comprises a primary unit and at least one secondary unit. The primary unit includes an input node for receiving an input voltage produced by the energy source; a transmitter circuit including a transmitter coil configured to generate an electromagnetic field; and a regulator. The regulator is configured to sense a current consumption of the primary unit, determine a gradient of the current consumption with respect to different input voltages, and determine an optimal input voltage based on the gradient. The at least one secondary unit comprises a receiver circuit and a load. The receiver unit includes a coil that wirelessly and inductively couples with the electromagnetic field of the primary unit to receive power therefrom. The receiver unit further includes a regulator circuit configured to provide a constant power to an output node.
Abstract:
A system for combining power to a load in a Powered Device (PD) using Power Over Ethernet (PoE) receives power from a first channel and power from a second channel, via four pairs of wires. A MOSFET bridge for each channel is initially disabled. A bridge controller IC simultaneously senses all the voltages and controls the bridge MOSFETs. The bridge controller IC also contains a first PoE handshaking circuit. A second PoE handshaking circuit is external to the bridge controller IC and operates independently. The body diodes in the MOSFET bridge initially couple the first channel to the second PoE handshaking circuit while isolating the second channel. The second handshaking circuit then couples the first channel to the load. The first handshaking circuit then carries out a PoE handshaking routine for the second channel. Ultimately, the bridge controller controls the bridge MOSFETs to couple both channels to the load.