Abstract:
In one embodiment, a device (e.g., path computation device) informs a network management device of a plurality of possible probing profiles, where nodes of a computer network receive the plurality of possible probing profiles from the network management device. Based on determining that particular information is desired from one or more particular nodes of the nodes of the computer network, the device may then select one or more particular probing profiles of the plurality of possible probing profiles based on the particular information, and instructs the one or more particular nodes to probe one or more particular destination nodes according to the one or more particular probing profiles.
Abstract:
A system includes an on-board unit (OBU) in communication with an internal subsystem in a vehicle on at least one Ethernet network and a node on a wireless network. A method in one embodiment includes receiving a message on the Ethernet network in the vehicle, encapsulating the message to facilitate translation to Ethernet protocol if the message is not in Ethernet protocol, and transmitting the message in Ethernet protocol to its destination. Certain embodiments include optimizing data transmission over the wireless network using redundancy caches, dictionaries, object contexts databases, speech templates and protocol header templates, and cross layer optimization of data flow from a receiver to a sender over a TCP connection. Certain embodiments also include dynamically identifying and selecting an operating frequency with least interference for data transmission over the wireless network.
Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching multicast listeners from a multicast source, each routing arc comprising a first network device as a first end of the routing arc, a second network device as a second end of the routing arc, and at least a third network device configured for receiving from each of the first and second network devices a copy of a multicast packet originated from the multicast source; and causing the multicast packet to be propagated throughout the loop-free routing topology based on the first and second ends of each routing arc forwarding the corresponding copy into the corresponding routing arc.
Abstract:
In one embodiment, a device in a network receives one or more time slot usage reports regarding a use of time slots of a channel hopping schedule by nodes in the network. The device predicts a time slot demand change for a particular node based on the one or more time slot usage reports. The device identifies a time frame associated with the predicted time slot demand change. The device adjusts a time slot assignment for the particular node in the channel hopping schedule based on predicted demand change and the identified time frame associated with the predicted time slot demand change.
Abstract:
A node in a Low power and Lossy Network (LLN) is managed by monitoring a routing configuration on a node in a LLN. A triggering parameter that is used to invoke an address change on a child node is tracked and a threshold against which to compare the triggering parameter is accessed. The triggering parameter is compared to the threshold. Based on results of comparing the triggering parameter to the threshold, it is determined that an address change at the child node is appropriate. An address change of a child node appearing in the routing configuration is invoked based on the determination that an address change is appropriate.
Abstract:
In one embodiment, a switch in a computer network may receive a neighbor solicitation (NS) message for a target node for which no neighbor authentication (NA) reply has been received at the switch. The switch may then determine whether to forward the NS message to only non-constrained links of the switch, or to both non-constrained links and constrained links of the switch. The determining may be configured to intermittently result in forwarding the NS message for the target node to both the non-constrained links and the constrained links. The switch may then forward the NS message according to the determination.
Abstract:
In one embodiment, an agent device discovers a set of path computation elements (PCEs) and corresponding available capabilities and resources, and determines particular capabilities and resources of interest in a particular computer network. Upon building a simplified view of the available capabilities and resources of the set of PCEs based on the particular capabilities and resources of interest, the agent device advertises the simplified view of the available capabilities and resources into the particular computer network.
Abstract:
Techniques are presented herein for use in a Time Division Multiple Access (TDMA) communication system in which devices send transmissions to each other in time slots during a time frame. A plurality of time slots is allocated for a first device to send traffic to a second device. The first device includes in a transmission during at least one of the plurality of time slots an indicator configured to indicate whether a next time slot in the plurality of time slots is used for traffic from the first device to the second device. Thus, the actual usage of a next time slot in a sequence of a plurality of time slots may be dynamically determined by the transmitting device so that the receiving device(s) need not be in the idle listening mode for the next time slot, thereby saving power.
Abstract:
In one embodiment, a device detects a denial-of-service attack and generates a message in response to the detection of the denial-of-service attack. The message is then virally distributed to a plurality of subscribed devices.
Abstract:
In one embodiment, an access point is configured with a plurality of resource units (RUs). Each RU is configured to use a frequency range that differs from frequency ranges used by the other RUs. The access point determines a pattern of recurring signal performance over time. For each RU of the plurality of RUs, the pattern indicates the recurring signal performance with respect to a station when the station is located in a given physical location. The access point allocates one or more of the RUs for communicating with the station. The pattern is used for avoiding allocation of any of the RUs for which the station is predicted to experience strong multipath fading or other destructive interference.