Abstract:
The present invention provides systems and methods for quantifying, purifying and separating fullerenes, such as single wall carbon nanotubes (SWNTs). The purification/separation combination provides nearly 100% carbonaceous impurity-free SWNT content from a given impure sample and provides a desired chirality and diameter from a given non-separated sample. Nanometrological validation of the success of purification and separation uses a pyroelectric detector and Raman spectroscopy in a single system, thus providing a critical aspect for the nanomanufacturing environment. The purification/separation and nanometrological validations may be performed in a feedback loop to provide a satisfactorily refined sample and optimized purification/separation settings.
Abstract:
The invention concerns an optical system. The optical system comprises an input for receiving an optical signal, a predetermined output plane, and a diffraction grating for separating the optical signal received at the input into spectral elements thereof. The grating has a diffraction surface with a first predetermined profile. The first profile is formed by a plurality of points each conducted by different equations. Consequently, each spectral component is focused on the predetermined plane.
Abstract:
Method and apparatus for analyzing radiation using analyzers and employing the spatial modulation of radiation dispersed by wavelength or along a line.
Abstract:
A spectral analytical unit for acting on a parallel light bundle having different wavelengths. The spectral analytical unit includes a diffraction grating on which the light bundle falls, the diffraction grating splitting the different wavelengths through diffraction in first spectral directions defining a light bundle diffraction order 1 without recycle, and the diffraction grating bending the light bundle in second directions defining a light bundle diffraction order 0 without recycle, a detector line made up of a plurality of elements, optics for focusing the split light bundle diffraction order 1 without recycle on the detector line, evaluation electronics connected to the detector line for obtaining data related to a created spectrum, and a deflecting device wherein the diffraction order 0 light bundle without recycle meets on the deflecting device which is so directed and positioned that this light bundle falls on the diffraction grating thereby creating a reflected diffraction order 1 light bundle with first recycle and a reflected diffraction order 0 light bundle with first recycle whereby the diffraction order 1 without recycle and the reflected diffraction order 1 light bundle with first recycle each of a part wavelength range are impressed through the optics on a single element of the detector line.
Abstract:
A tunable transmissive grating comprises a transmissive dispersive element, a reflective element, and an angle θ formed between the two elements. A first optical path is formed according to the angle θ, wherein light dispersing from the dispersive element is directed onto the reflective element and reflects therefrom. At least one element is rotatable about a rotational center to cause a second optical path and thereby tune the wavelength of the light reflecting from the reflective element. Both elements can be rotatable together around a common rotational center point according to certain embodiments, and/or each element can be independently rotated around a rotational axis associated only with that element. According to some embodiments, the relative angle θ formed between the elements is held constant; however, in other embodiments θ can vary.
Abstract:
A spectrometer is designed capable of effectively covering the full desired spectral range using an array of multiple diffraction gratings arranged in gradually differentiated angles to diffract certain sub-range of photon wavelengths to the target detectors without relying on mechanically changing gratings or use of any moving parts. The optically subdivided spectral analysis results are then electronically integrated to accurately yield the desired full range spectral measurement at a speed compatible to the limit of optical and digital analyzers' speed of the measuring system without manual adjustment and/or mechanical movement delays.
Abstract:
The present invention provides a diffraction grating element that allows the temperature control mechanism to be dispensed with or simplified. The diffraction grating element of the present invention comprises a transparent plate having a first surface and a second surface that are substantially parallel with one another; and a diffraction grating which is formed on a first surface side with respect to the second surface and is substantially parallel with the first surface. At any temperature within a temperature range −20° C. to +80° C., the sum of the rate of change in the period per unit length of the diffraction grating with respect to a temperature change, and the temperature coefficient of the refractive index of a medium that surrounds the diffraction grating element is 0.
Abstract:
A spectroscope is provided with a point light source which emits a dispersed light having a plurality of wavelengths, a first optical system which collimates the dispersed light which is emitted from the point light source into an approximate parallel light flux, a dispersing element which disperses the approximate parallel light flux, and a second optical system for condensing the dispersed light flux near a focal plane. Aberrations for a plurality of wavelengths of an off-axial light flux are compensated in the second optical system. By doing this, it is possible to provide a spectroscope which has a high wavelength resolution.
Abstract:
A Fabry-Perot cavity filter includes a first mirror and a second mirror. A gap between the first and the second mirror monotonically varies as a function of width of the filter. This filter may be used with photodetector and a channel selection filter in an optical device, such as a spectrum analyzer. The channel selection filter may be a metal nanooptic filter array which includes plurality of subwavelength apertures in a metal film or between metal islands.
Abstract:
A wavelength division multiplexed device is based on a transmission grating spectrometer having at least two diffractive optical elements. The WDM device provides flexible use and may be widely applied in WDM systems. The device is useful for multiplexing and demultiplexing, channel monitoring, for adding and dropping channels, and for controlling the power in individual channels within a multiple channel signal. The device provides for dynamic control of individual channels, and may be advantageous in use as a gain flattening filter.