Abstract:
Systems and methods for dynamically adapting channel access or transmission parameters based upon an identified channel access parameter or previously used transmission parameter are disclosed. In an aspect, an electronic device for communication over a wireless network is disclosed. The electronic device comprises a processor configured to generate a message that identifies one rule of a plurality of rules. Each of the plurality of rules defines a process for adapting a value of a communication parameter based on an identified channel access parameter. Also, each of the plurality of rules provides a particular quality of service and a particular priority for communication with the electronic device. The electronic device further comprises a transceiver configured to transmit the message to a station.
Abstract:
Certain aspects of the present disclosure relate to techniques for constructing a long training field (LTF) sequence in a preamble to reduce a peak-to-average power ratio (PAPR) at a transmitter.
Abstract:
A method includes sending, from a first transmitter to a first receiver, a request to send (RTS) message associated with a first transmit opportunity (TXOP). The RTS message requests the first receiver to indicate whether reuse of the first TXOP is permitted. The method further includes receiving, at the first transmitter from the first receiver, a clear to send (CTS) message responsive to the RTS message.
Abstract:
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes exchanging, at an access point, at least one frame reserving a wireless medium with at least one of a first and second wireless device. The method further includes receiving a first communication on a first set of wireless frequencies from the first wireless device. The method further includes receiving a second communication, at least partially concurrent with the first communication, on a second set of wireless frequencies from the second wireless device. The method further includes transmitting at least one acknowledgment of the first and second communication. The first set and the second set are mutually exclusive subsets of a set of wireless frequencies available for use by both the first and second wireless device.
Abstract:
Systems, methods, and devices for wireless communication are disclosed herein. One aspect of the disclosure provides a method of receiving a transmission from two or more wireless communication devices. The method includes receiving a first preamble transmitted by a first wireless device; simultaneously receiving a second preamble transmitted by a second wireless device; receiving a first portion of the transmission in a first section of a bandwidth, the first portion transmitted by the first wireless device including a first data section; and simultaneously receiving a second portion of the transmission in a second section of the bandwidth, the second section of the bandwidth not overlapping with the first section of the bandwidth, the second portion transmitted by the second wireless device, the second portion including a second data section.
Abstract:
According to one or more embodiments of the present disclosure, a method for autonomously adapting a discovery packet (DP) transmission frequency comprises: calculating, by an electronic processor of a device of a plurality of devices in a system, a DP transmission cycle “N”, wherein the calculating further comprises: broadcasting, by the device, its own observed device number in a DP; decoding, by the electronic processor of the device, an observed device number from DPs of each detectable device of the plurality of devices in the system; computing, by the electronic processor of the device, a final observed device number for the system wherein the final observed device number is a maximum (“M”) of its own observed device number and all decoded observed device numbers from DPs of the detectable devices; and based on the computed maximum (“M”), determining, by the electronic processor of the device, the DP transmission cycle “N”.
Abstract:
An access terminal adapts (e.g., self-optimizes) at least one handover parameter used by the access terminal for determining whether and/or how to handover from one access point to another access point. In addition, the access terminal uses different handover parameters for handover between different pairs of access points. For each of the access point pairs, the access terminal maintains a record of any handover issues that occur during handover of the access terminal between the access points. In the event a handover issue arises for a given pair of access points, the access terminal may adapt the handover parameter(s) associated with that access point pair in an attempt to mitigate the handover issue. In the event handover parameter adaptation occurs or occurs too frequently, the access terminal may store the adapted handover parameters for use during a subsequent handover operation and/or handover parameter adaptation operation.
Abstract:
Systems and methods for selecting medium access parameters for each communication session are disclosed. In one aspect an access point includes a processor configured to select a value for a medium access parameter for a particular communication session between the access point and a wireless station.
Abstract:
In one aspect, a method of communicating via a wireless medium by a wireless communications apparatus within a network is provided. The method includes detecting an operating characteristic associated with a load of the network. The method further includes determining an process for adjusting a size of a contention window in response to a successful transmission of a frame based on the detected operating characteristic, the contention window being provided for determining a deferral period for deferring access to the wireless medium. The method further transmitting information indicating the process to one or more wireless devices operating within the network.
Abstract:
Systems and methods for communicating in a wireless communication system are described. Various processes for detecting and correcting communication errors described. In aspect a method in a wireless communication system is provided. The method includes transmitting a first packet from a sending device to a receiving device. The method further includes listening for an acknowledgement during a first time period. The method further includes transmitting a second packet to the receiving device after a second time period, when an acknowledgement is not received during the first time period. The second packet includes one or more error-correction codes operable to recover the first packet.