Abstract:
Embodiments of the present invention provide a reference signal detection method and receiving method, user equipment, and a base station. The user equipment includes: a determining unit, configured to determine configuration information of a reference signal, where the configuration information includes information about a first candidate time-frequency resource and information about a second candidate time-frequency resource, where the first candidate time-frequency resource includes a first partial time-frequency resource and a second partial time-frequency resource; the second candidate time-frequency resource includes a third partial time-frequency resource and a fourth partial time-frequency resource; and the first partial resource, the second partial resource, the third partial resource, and the fourth partial resource do not overlap one another; and a detection unit, configured to detect the reference signal according to the configuration information. According to the embodiments of the present invention, cell discovery and measurement performance can be improved.
Abstract:
The present invention discloses a carrier switching method, a base station, and user equipment, where the method includes: determining, according to carrier switching capability information of user equipment UE, a carrier switching policy according to which the UE performs carrier switching; and sending carrier switching indication information to the UE, where the carrier switching indication information is used for indicating the carrier switching policy, so that the UE performs carrier switching according to the carrier switching policy. In the carrier switching method, the base station and the user equipment according to embodiments of the present invention, the UE having no carrier aggregation capability is enabled to dynamically perform switching between at least two carriers, so that quality of service of a service of the UE can be improved, user experience can be improved, and system performance can be improved.
Abstract:
Embodiments of the present invention provide an uplink control information transmission method, a base station, and user equipment. The method includes: receiving, by UE in a downlink subframe N, a downlink control channel sent by a base station; sending, by the UE, a hybrid automatic repeat request-acknowledgement corresponding to the downlink control channel to the base station in an uplink subframe N+4 by using a PUCCH, where when the uplink subframe N+4 belongs to a first uplink subframe set, the PUCCH is carried on a second serving cell of the UE, and when the uplink subframe N+4 belongs to a second uplink subframe set, the PUCCH is carried on the first serving cell, where a duplexing mode of the first serving cell is different from a duplexing mode of the second serving cell.
Abstract:
Embodiments of the present disclosure provide a method, where the method includes: when determining that a first cell enters or prepares to enter a dormant state, sending, by a base station, a first signal to a user equipment (UE) in the first cell, where the first signal carries information about time when the first cell enters the dormant state, for determining, according to the information about the time, that the first cell enters the dormant state; and when determining that the first cell enters an active state from the dormant state, sending, by the base station, a second signal to the user equipment in the first cell, for determining, according to the second signal, that the first cell enters the active state. By using technical solutions provided in the present disclosure, the UE can discover a state change of a cell in time.
Abstract:
An embodiment method includes: receiving, by a first communications device, a first service sent by a second communications device on a first time-frequency resource in a first subframe; and sending, by the first communications device at a preset feedback subframe location, first feedback information corresponding to the first service.
Abstract:
A control information sending method, a base station, and user equipment are provided. The method includes: sending, by a base station, first control information to first user equipment; transceiving, by the base station, first data to/from the first user equipment according to the first control information; and sending, by the base station, first trigger information to the first user equipment, where the first trigger information is used to indicate that the base station transceives second data to/from the first user equipment according to partial information or all information of the first control information.
Abstract:
A method and an apparatus for allocating ACKnowledgement (ACK)/Non-ACKnowledgement (NACK) channel resources and processing confirmation information are disclosed. The method includes: The network side determines one physical channel area among multiple physical channel areas to be used by an ACK/NACK channel, and notifies the determined physical channel area to a User Equipment (UE) so as to enable the UE to determine a channel for receiving or sending ACK/NACK information in the determined physical channel area according to a mapping rule. Moreover, the network side may send or receive ACK/NACK information on the physical channel area that includes the ACK/NACK channel. The method and apparatus improve the utilization ratio and flexibility of the ACK/NACK channel, and reduce the probability of conflict generated by the ACK/NACK channel.
Abstract:
Embodiments of the present application provide a synchronization method and a base station. In the embodiments of the present application, a first base station receives, on at least one part of channels in a receiving band supported by the first base station, at least one first downlink synchronization signal sent by at least one second base station, and selects a first downlink synchronization signal from the at least one first downlink synchronization signal, to enable the first base station to execute time synchronization according to the selected first downlink synchronization signal, which can avoid a problem in the prior art of low reliability of time synchronization caused by low availability of a GPS signal, and relieve interference suffered by a base station from another base station caused by a problem of asynchronous receiving and sending time or inaccurate time synchronization, thereby improving signal quality of an air interface.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
A control information transmission method a user equipment for operating the method and a base station for operating the method are disclosed. In an embodiment the method includes determining, by a user equipment, a downlink control information (DCI) format of a downlink control channel corresponding to a first serving cell, wherein the first serving cell is a serving cell corresponding to the user equipment, and the DCI format is determined by using a duplex mode of the first serving cell and a hybrid automatic repeat request-acknowledgment (HARQ-ACK) feedback corresponding to the first serving cell and detecting, by the user equipment, the downlink control channel according to the determined DCI format.