Abstract:
A tiered credentialing approach provides assurance to customers having virtual machines running in a remote environment that the virtual images for these machines are in a pristine state and running in a trusted execution environment. The environment can be divided into multiple subsystems, each having its own cryptographic boundary, secure storage, and trusted computing capabilities. A trusted, limited subsystem can handle the administrative tasks for virtual machines running on the main system of a host computing device. The limited system can receive a certificate from a certificate authority, and can act as a certificate authority to provide credentials to the main system. Upon an attestation request, the subsystems can provide attestation information using the respective credentials as well as the certificate chain. An entity having the appropriate credentials can determine the state of the system from the response and verify the state is as expected.
Abstract:
Generally described, physical computing devices in a virtual network can be configured to host a number of virtual machine instances. The physical computing devices can be operably coupled with offload devices. In accordance with an aspect of the present disclosure, a security component can be incorporated into an offload device. The security component can be a physical device including a microprocessor and storage. The security component can include a set of instructions configured to validate an operational configuration of the offload device or the physical computing device to establish that they are configured in accordance with a secure or trusted configuration. In one example, a first security component on the offload device can validate the operational computing environment on the offload device and a second security component on the physical computing device can validate the operational computing environment on the physical computing device.
Abstract:
Users intending to launch instances or otherwise access virtual resources in a multi-tenant environment can specify a launch configuration. For each type of instance or each type of user, at least one launch configuration is created that includes parameters and values to be used in instantiating an instance of that type, the values being optimized for the current environment and type of instance. Launch configurations can be optimized for different types of users, such as to account for security credentials and access levels. Such an approach enables users to launch instances by contacting the resource provider directly without need for a proxy, which can function as a choke point under heavy load. The use of an appropriate launch configuration can be enforced for any type of user at any level, such as at the sub-net level, by modifying a request that does not specify an appropriate launch configuration.
Abstract:
Techniques are described for providing managed virtual computer networks whose configured logical network topology may have one or more virtual networking devices, such as by a network-accessible configurable network service, with corresponding networking functionality provided for communications between multiple computing nodes of a virtual computer network by emulating functionality that would be provided by the networking devices if they were physically present. The networking functionality provided for a managed computer network may include supporting a connection between that managed computer network and one or more other managed computer networks, such as via a provided virtual peering router to which each of the managed computer networks may connect, with the functionality of the virtual peering router being emulated by modules of the configurable network service without physically providing the virtual peering router, including to manage routing communications between the inter-connected managed computer networks in accordance with client-specified configuration information.
Abstract:
Data transformation policies specify conditions based at least in part on request features. When a request is received, features of the received request are used to determine any data transformation policies applicable to the request. When a data transformation policy applies to the request, a corresponding data transformation is applied to data responsive to the request. A response to the request comprising transformed data is provided.
Abstract:
A formalized set of interfaces (e.g., application programming interfaces (APIs)) is described, that uses a security scheme, such as asymmetric (or symmetric) cryptography, in order to secure the results of privileged operations on systems such as the operating system (OS) kernel and/or the hypervisor. The interface allows a public key to be included into a request to perform a privileged operation on a hypervisor and/or kernel. The kernel and/or hypervisor use the key included in the request to encrypt the results of the privileged operation. In some embodiments, the request itself can also be encrypted, such that any intermediate parties are not able to read the parameters and other information of the request.
Abstract:
Systems and methods for attesting to information about a computing resource involve electronically signed documents. For a computing resource, a document containing information about the resource is generated and electronically signed. The document may be provided to one or more entities as an attestation to at least some of the information contained in the document. Attestation to information in the document may be a prerequisite for performance of one or more actions that may be taken in connection with the computing resource.
Abstract:
Techniques are described for providing managed computer networks, such as for managed virtual computer networks overlaid on one or more other underlying computer networks. In some situations, the techniques include facilitating replication of a primary computing node that is actively participating in a managed computer network, such as by maintaining one or more other computing nodes in the managed computer network as replicas, and using such replica computing nodes in various manners. For example, a particular managed virtual computer network may span multiple broadcast domains of an underlying computer network, and a particular primary computing node and a corresponding remote replica computing node of the managed virtual computer network may be implemented in distinct broadcast domains of the underlying computer network, with the replica computing node being used to transparently replace the primary computing node in the virtual computer network if the primary computing node becomes unavailable.
Abstract:
Disclosed are various embodiments for disabling administrative access to computing resources. A customer request is obtained to disable administrative access of a provider to one or more computing devices. The provider supplies computing resources of the at least one computing device to the customer. The administrative access of the provider to the computing devices is disabled in response to the request. The administrative access of the provider remains disabled until a reset of the computing devices is performed.
Abstract:
Requests are submitted to a request processing entity where the requests include a cryptographic key to be used in fulfilling the request. The request processing entity, upon receipt of the request, extracts the key from the request and uses the key to perform one or more cryptographic operations to fulfill the request. The one or more cryptographic operations may include encryption/decryption of data that to be/is stored, in encrypted form, by a subsystem of the request processing entity. Upon fulfillment of the request, the request processing entity may perform one or more operations to lose access to the key in the request, thereby losing the ability to use the key.