Abstract:
Systems and methods for communication using hybrid signals are disclosed. In one aspect an apparatus for communication includes a processing system configured to encode a first set of information in a plurality of symbols and to encode a second set of information according to a spacing among the symbols. The apparatus may further comprise a transmitter configured to transmit to a device the symbols with the spacing among the symbols. In another aspect, an apparatus for communication includes a processing system configured to decode a first set of information from a plurality of symbols encoded with the first set of information or a second set of information from a spacing among the symbols by determining the spacing among the symbols. The apparatus may further comprise a receiver configured to receive the symbols via a wireless communication.
Abstract:
Techniques are provided for constructing or determining a training sequence as a part of transmission preamble to minimize (or at least reduce) a peak-to-average power ratio (PAPR) at a transmitting node. In one example, a long training field (LTF) sequence of a preamble is determined that combines a set of interpolating sequences with LTF tone values. The LTF tone values may cover at least a portion of bandwidth of a first size, with each of the LTF tone values repeated for different subcarriers. The phases of tones of the LTF sequence may be rotated per bandwidth of the first size and certain tones of the LTF sequence may have a stream of values at pilot locations. For example, the phases of tones of the LTF sequence may be rotated in an effort to reduce PAPR during a transmission of the LTF sequence.
Abstract:
Systems, methods, and devices for concurrently allowing station-to-station transmissions and access point-to-station transmissions are described herein. In some aspects, a method comprises transmitting, to an access point, a request for an available channel frequency. The method further comprises receiving a coordination message from the access point. The coordination message may indicate that a first frequency channel is allocated for transmissions between a first device and a second device and that a second frequency channel is allocated for transmissions between a third device and a fourth device. The method further comprises transmitting a first data packet to the fourth device using the second frequency channel concurrently with a transmission of a second data packet between the first device and the second device using the first frequency channel.
Abstract:
Systems, methods, and devices for wireless communication. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a receiver configured to receive a wireless signal comprising a packet. At least a portion of the wireless signal is configured to be received over a bandwidth lower than or equal to 1.25 MHz. The packet is formed from at least one orthogonal frequency-division multiplexing (OFDM) symbol comprising thirty-two tones. The thirty-two tones correspond to frequency subcarriers within the bandwidth. The thirty-two tones of the at least one OFDM symbol are allocated as: twenty-four data tones, two pilot tones, five guard tones, and one direct current (DC) tone. The apparatus includes a processor configured to evaluate the wireless signal. The processor includes a transform module configured to convert the at least one OFDM symbol into a frequency domain signal using a thirty-two point mode.
Abstract:
Methods and devices for communicating data in a wireless communications network are described herein. In one aspect, network layers are offloaded from a station to an access point. In another aspect, flow control is introduced between the station and access point. In another aspect, segmentation is introduced between the station and access point. In another aspect, keep alive is introduced between the station and access point. In another aspect, in addition to MAC layer sequencing and acknowledging, additional sequencing and acknowledging is performed between the station and access point to ensure reliable transmission of data. In another aspect, MAC layer sequencing and acknowledging is disabled. In another aspect, a last MPDU fragment is used to ensure reliable transmission of data.
Abstract:
Systems, methods, and devices for transmitting data are described herein. In some aspects, a method comprises generating a first message. The first message may comprise an allocation of a first station to a first frequency channel and a second station to a second frequency channel. The method further comprises transmitting the first message over the first frequency channel and the second frequency channel. The method further comprises transmitting, after transmission of the first message, a second message to the first station using the first frequency channel. The method further comprises transmitting, after transmission of the first message, a third message to the second station using the second frequency channel.
Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method a method of communication over a wireless medium. The method includes transmitting, from a first wireless device, a first communication reserving access to the wireless medium during an indicated first time period. The first communication includes a contention-based transmission. The method further includes transmitting, during the first time period, a second communication reserving access to the wireless medium during an indicated second time period at least partially overlapping the first. The second communication includes a scheduled transmission. The method further includes transmitting or receiving a long term evolution unlicensed (LTE-U) transmission during the second time period.
Abstract:
A method includes determining, at a first transmitter, whether to permit reuse of a first transmit opportunity (TXOP) associated with a message. The method further includes sending a portion of the message from the first transmitter to a first receiver. The portion of the message indicates whether reuse, by a reuse transmitter, of the first TXOP is permitted. When reuse of the first TXOP is permitted, the reuse transmitter is permitted to send a second message while the first transmitter sends a second portion of the message to the first receiver during the first TXOP.
Abstract:
Systems and methods of performing communication via a sub-1 gigahertz wireless network are disclosed. Values of one or more inter-frame spacing parameters for use in communication via the sub-1 gigahertz wireless network are also defined. The parameters may include a short inter-frame spacing (SIFS) time of 160 microseconds (μs). The parameters may also include a clear channel assessment (CCA) time of 40 μs. Additional parameters, such as air propagation time are also defined (e.g., for inclusion into a standard, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11ah).
Abstract:
Methods and apparatus for channel state information feedback are provided. In one aspect, a method for wireless communication is provided. The method includes providing a request from an access point to two or more stations for the two or more stations to transmit channel state information (CSI) concurrently at a specific time. The method further includes receiving, at the access point, the CSI from each of the two or more stations.