Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for performing cell reselection based on neighbor cell measurements. For certain aspects, a method of wireless communication generally includes, while actively served in a first Radio Access Technology (RAT) network, obtaining neighbor cell measurements for a second RAT network, and making a decision on whether to perform a cell reselection to the second RAT network based on the neighbor cell measurements.
Abstract:
Wireless communication in a radio access network may be implemented in a manner where a user equipment (UE) with multiple Universal Subscriber Identity Modules (USIMs) selects a system based on the system's preference status among the USIMs of the UE. A system that is home to all the UE's USIMs is selected over one that is home to some USIMs but roaming for others. A system that is home to some USIMs but not provisioned for other USIMs is selected over one that is roaming to all USIMs. A system that is roaming to all USIMs is selected over one that is roaming to some USIMs but not provisioned for other USIMs. Ranking of systems may be done independently by USIM or may be done using a combined ranking method that considers other USIMs prior to an individual USIM indicating a system priority. Manual system selection may also be used.
Abstract:
Wireless communication in a radio access network may be implemented when a user equipment (UE) is in active communication with a serving node B using a first international mobile subscriber identity (IMSI) and a communication request is made for a second IMSI associated with the same UE. The communication request to the second IMSI of the UE is directly through the serving node B rather than through a general page from the cells of the UE's location area or routing area. The direct communication may be through a page from the serving node B or through a unicast communication directly to the UE from the serving node B.
Abstract:
Methods and apparatus for configuring and scheduling paging intervals for a mobile station (MS) having multiple subscriber identity modules (SIMs) to be aligned are provided. The MS having multiple SIMs may operate in a network via a particular radio access technology (RAT), such as Code Division Multiple Access (CDMA) EVDO (Evolution-Data Optimized). By having aligned paging intervals, the MS may wake up only once during the paging cycles for the various SIMs rather than waking up multiple times, thereby reducing power consumption of the MS during idle mode compared to a conventional MS with multiple SIMs.
Abstract:
Certain aspects of the present disclosure provide techniques for resource allocation for a TD-SCDMA multiple USIM mobile station. According to certain aspects, a base station may send allocation for a first call with a first subscriber identity to a UE that supports multiple subscriber identities, wherein the allocation for the first call comprises allocation of at least a first uplink time slot and at least a first downlink time slot in a frequency carrier and send the UE allocation for a second call with a second subscriber identity, wherein the allocation for the second call comprises allocation of at least a second uplink time slot and at least a second downlink time slot in the frequency carrier, wherein the second uplink time slot is different than the first uplink time slot.
Abstract:
Wireless communication in a radio access network may be implemented where a user equipment (UE) sends a hold signal to a Node B indicating that data transmission to the UE is to be put on hold. The UE may resume data transmission from the Node B by sending a resume signal to the Node B. During the hold in transmission, the UE may measure a GSM network to assist in handover of the UE between a TD-SCDMA network and a GSM network.
Abstract:
A method for implementing Short Message Service (SMS) in a wireless communication network may be implemented by a mobile station. The method may include sending mobile-originated SMS data while in idle mode. Ranging procedures may be used to send the mobile-originated SMS data. The method may also include receiving mobile-terminated SMS data while in the idle mode. Receiving the mobile-terminated SMS data may include receiving a broadcast page message from a base station, and the broadcast page message may include an identifier for the mobile station.
Abstract:
In geographical areas with incomplete Time Division Synchronous Code Division Multiple Access (TD-SCDMA) coverage, it may be beneficial for a multimode User Equipment (UE) to handover to a GSM network, a WCDMA network, a CDMA 1x RTT network, or an LTE network. When multiple networks are available to the UE and a poor signal quality is detected in the TD-SCDMA network, one of the available networks may be selected for inter-RAT handover based on a service type of the active call on the UE. For example, when a circuit-switched call, such as a voice call, is in progress on the UE, an inter-RAT handover to a GSM network occurs. In another example, when a packet-switched call, such as a data call, is in progress on the UE, an inter-RAT handover to a WCDMA network occurs. Selecting a network for inter-RAT handover based on an active call service type improves the service provided to the UE.
Abstract:
Uplink synchronization processes in multi-carrier time division-synchronous code division multiple access (TD-SCDMA) systems include determining uplink transmission timing for a first carrier frequency and performing uplink synchronization on the other carrier frequencies based on the transmission timing of the first carrier frequency. The transmission timing may be adjusted based on a timing offset that is measured between the received downlink pilot signals of the various carrier frequencies. User equipment may perform uplink synchronization individually with each of the carriers serviced by a particular Node B after receiving synchronization information regarding those carrier frequencies.
Abstract:
Handover processes in multi-carrier carrier time division-synchronous code division multiple access (TD-SCDMA) systems include a two-step handover process. When handover of a user equipment is warranted, a hard handover is performed within a source cell of the system from a first frequency to a second frequency. A baton handover is then performed from the second frequency at the source cell to the second frequency at a target cell. In another aspect, a user equipment receives an assignment of an uplink time slot at a target cell that was selected to prevent the uplink time slot from being proximal to a downlink time slot of a source cell. The user equipment then performs the inter-frequency baton handover using the uplink time slot.