Abstract:
Wireless communication systems and methods are described where communication is established with a user device at a low frequency. Coarse channel information, such as pathloss, power delay profile, and multipath direction information, regarding the communication between a wireless network device and the user device at the low frequency may then be used to establish communication with the user device at a high frequency.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).
Abstract:
Improvements to signaling procedures for use in physical random access channel (PRACH)-based proximity detection are disclosed. Signaling and signaling processes from a serving base station may trigger a more efficient and reliable transmission of PRACH from related user equipment (UE). At the dynamic power nodes (DPNs) monitoring for such PRACH-based proximity, features are disclosed which establish neighbor lists for more efficient management of detection and proximity activation.
Abstract:
A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband.
Abstract:
Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates.
Abstract:
Methods and apparatus for determining a PRS configuration in a dynamic TDD configuration adaptation are described. One example method generally includes determining a first PRS configuration for receiving PRS when communicating according to a first subframe configuration that defines one or more uplink subframes and one or more downlink subframes, receiving an indication of a switch from the first subframe configuration to a second subframe configuration, and determining a second PRS configuration for receiving PRS when communicating according to the second subframe configuration.
Abstract:
Enhanced sounding reference signal (SRS) transmissions for multiple input, multiple output (MIMO) operation are disclosed in which a user equipment (UE) detects an observed interference level for each receiver chain of the UE. In response to an imbalance, the UE precodes a SRS targeting downlink operation to indicate the imbalance. The UE then transmits the precoded SRS. In alternative aspects, the precoded SRS vector may be determined by an evolved nodeB (eNB). In such aspects, the eNB determines the precoded SRS vector targeting downlink operations for the served UEs, wherein the determined precoded SRS vector includes determining the precoded SRS vector on a per UE basis, enabling the precoded SRS vector for either one or both of frequency division duplex (FDD) systems and time division duplex (TDD) systems, or enabling the precoded SRS vector for aperiodic SRS only. The eNB then transmits the determined precoded SRS vector to the UE.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one configuration, the apparatus may be a UE. The apparatus may receive a message (e.g., via an ePCFICH) from an eNB and may process an ePDCCH using the message. The apparatus may receive a message via an ePCFICH indicating resources for ePDCCH, the ePDCCH being a localized ePDCCH and/or a distributed ePDCCH and process the ePDCCH using the message. The apparatus may receive an ePCFICH from an eNB, where the ePCFICH is a function of at least a PCI or a virtual cell identifier. The apparatus may process an ePDCCH using a default set of resources when an ePCFICH is not detected. The apparatus may receive an ePCFICH value and may determine either a starting symbol index for an ePDCCH or one or more ePDCCH resource sets based at least on the ePCFICH value.
Abstract:
Time division multiplexing (TDM) partitioning is one of the inter-cell interference coordination (ICIC) mechanisms considered for a heterogeneous network (HetNet) ICIC in a co-channel deployment. For example, in subframes that are pre-allocated to an evolved Node B (eNB), neighbor eNBs may not transmit, hence interference experienced by served user equipments (UEs) may be reduced. Semi-persistent scheduling (SPS) grants may have various available periodicities, which may not be compatible with TDM partitioning. Therefore, a UE may miss an SPS opportunity that was scheduled for a subframe that was not usable by the UE. Hence, using SPS grants with small periodicities in a heterogeneous network with TDM partitioning may require changes which may include adjusting the periodicities of the SPS grants, rescheduling of uplink SPS messages based on resource partitioning information (RPI), and/or determining RPI based on current SPS grants.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for joint support of coordinated multipoint (CoMP) operations and carrier aggregation (CA). One method generally includes receiving signaling indicating a configuration, from a set of possible configurations, that defines how the UE is to communicate with one or more base stations (BSs) using coordinated multipoint (CoMP) operations on one or more component carriers (CCs) and communicating in accordance with the configuration.