Abstract:
An infrared imager includes an array of capacitance sensors that operate at room temperature. Each infrared capacitance sensor includes a deflectable first plate which expands due to absorbed thermal radiation relative to a non-deflectable second plate. In one embodiment each infrared capacitance sensor is composed of a bi-material strip which changes the position of one plate of a sensing capacitor in response to temperature changes due to absorbed incident thermal radiation. The bi-material strip is composed of two materials with a large difference in thermal expansion coefficients.
Abstract:
Radiation detectors are disclosed that include two electrodes (reference electrode and response electrode) that face each other and have a set gap therebetween. The electrodes are attached to the free ends of two respective displaceable members having identical structures. The displaceable members are each made of at least two layers, of different materials having different respective coefficients of thermal expansion, layered atop one another in a laminar fashion to form respective thermal bimorphs. Incident radiation is received by a radiation absorber that heats up from absorbed radiation. The heat is transferred to one of the displaceable members and exhibits a corresponding degree of bending (warping). The other displaceable member is not heated and exhibits no bending. The displaceable members are situated and configured such that each of the layers of all the displaceable members are formable simultaneously during respective fabrication steps.
Abstract:
A non-cooled type infrared sensor that uses ceramic in the lens body is provided, wherein the infrared light transmittance of the lens body, which is the light receiving part, the performance of shielding of the visible light that becomes noise, and the performance reliability as a whole are improved and the manufacturing cost of the sensor is reduced. The ceramic infrared sensor has a lens body comprised of ceramic, a supporting part, which supports the lens body, and a detection part, which detects the light that has been transmitted through the lens body, and contains a pigment that shields visible light. Also, a ceramic infrared sensor has a lens body comprising a ceramic part and a resin layer that is coated on at least the light receiving part of the ceramic part, a supporting part, which supports the lens body, and a detection part, which detects the light that has been transmitted through the lens body, and the ceramic part and/or resin layer of the lens body contains a pigment that shields visible light.
Abstract:
Crystal phase V2O3 with xnull1.5 in VOx is prepared. Such a lower specific resistance than a desired one as a starting film quality is modified to the final desired specific resistance by heating under an oxidizing atmosphere. A protective film for a bolometer material is formed by physical vapor deposition.
Abstract translation:制备VO x中x = 1.5的晶相V 2 O 3。 通过在氧化气氛下加热,比作为起始膜质量的所需要的这种较低的电阻率被修饰为最终期望的电阻率。 通过物理气相沉积形成测辐射热量计材料的保护膜。
Abstract:
An infrared ray receiving element includes a substrate made of a pyroelectric material and having at least one cantilever portion surrounded by a slit, in which at least a part of the cantilever portion in the substrate is uniformly polarized in the same direction and the remainder in the substrate includes a portion polarized at random. At least a pair of electrodes are respectively provided on a top surface and a bottom surface of the cantilever portion.
Abstract:
A nullfolded legnull thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.
Abstract:
A solid state optical spectrometer for combustion flame temperature determination comprises: a first photodiode device for obtaining a first photodiode signal, the first photodiode device comprising a silicon carbide photodiode and having a range of optical responsivity within an OH band; a second photodiode device for obtaining a second photodiode signal, the second photodiode device comprising a silicon carbide photodiode and a filter, the second photodiode device having a range of optical responsivity in a different and overlapping portion of the OH band than the first photodiode device; and a computer for obtaining a ratio using the first and second photodiode signals and using the ratio to determine the combustion flame temperature.