Abstract:
In general, techniques are described for obtaining decomposed versions of spherical harmonic coefficients. A device comprising one or more processors may be configured to perform the techniques, whereby the processors may be configured to obtain, from a bitstream, at least one of one or more vectors decomposed from spherical harmonic coefficients that were recombined with background spherical harmonic coefficients, wherein the spherical harmonic coefficients describe a sound field, and wherein the background spherical harmonic coefficients described one or more background components of the same sound field.
Abstract:
In general, techniques are described for performing an interpolation with respect to decomposed versions of a sound field. A device comprising one or more processors may be configured to perform the techniques. The processors may be configured to obtain decomposed interpolated spherical harmonic coefficients for a time segment by, at least in part, performing an interpolation with respect to a first decomposition of a first plurality of spherical harmonic coefficients and a second decomposition of a second plurality of spherical harmonic coefficients.
Abstract:
In general, techniques are described for compressing decomposed representations of a sound field. A device comprising one or more processors may be configured to perform the techniques. The one or more processors may be configured to obtain a bitstream comprising a compressed version of a spatial component of a sound field, the spatial component generated by performing a vector based synthesis with respect to a plurality of spherical harmonic coefficients.
Abstract:
In general, techniques are described for performing order reduction with respect to a plurality of spherical harmonic coefficients. In accordance with the techniques, a device comprising one or more processors may be configured to perform, based on a target bitrate, order reduction with respect to a plurality of spherical harmonic coefficients or decompositions thereof to generate reduced spherical harmonic coefficients or the reduced decompositions thereof, wherein the plurality of spherical harmonic coefficients represent a sound field.
Abstract:
In general, techniques are described for performing a positional analysis to code audio data. Typically, this audio data comprises a hierarchical representation of a soundfield and may include, as one example, spherical harmonic coefficients (which may also be referred to as higher-order ambisonic coefficients). An audio compression device that includes one or more processors may perform the techniques. The processors may be configured to allocate bits to one or more portions of the audio data, at least in part by performing positional analysis on the audio data.
Abstract:
In general, techniques are described for grouping audio objects into clusters. In some examples, a device for audio signal processing comprises a cluster analysis module configured to group, based on spatial information for each of N audio objects, a plurality of audio objects that includes the N audio objects into L clusters, where L is less than N, wherein the cluster analysis module is configured to receive information from at least one of a transmission channel, a decoder, and a renderer, and wherein a maximum value for L is based on the information received. The device also comprises a downmix module configured to mix the plurality of audio objects into L audio streams, and a metadata downmix module configured to produce, based on the spatial information and the grouping, metadata that indicates spatial information for each of the L audio streams.