Abstract:
To protect integrated circuits as efficiently as possible against electrostatic discharges, by putting a diode in avalanche mode without untimely triggering of this avalance mode by overvoltages of non-electrostatic origin, the following solution is proposed: through an insulated gate surrounding the cathode of the diode, the threshold for transition into avalanche mode of the diode is modified according to the slope of the overvoltages appearing at the terminal to be protected. The gate is connected to the terminal by an integrating circuit in such a way that the overvoltages are applied to the gate with a certain delay, inducing a potential difference between the cathode and the gate which is all the greater as the front of the overvoltage is steep. The avalanche triggering threshold is higher in the latter case than in the former one, and it is thus distinguish between overvoltages of diverse origins.
Abstract:
An ESD protection network protects a CMOS circuit structure integrated in a semiconductor substrate. The circuit structure includes discrete circuit blocks formed in respective substrate portions which are electrically isolated from one another and independently powered from at least one primary voltage supply having a respective primary ground, and from at least one secondary voltage supply having a respective secondary ground. This network includes a first ESD protection element for an input stage of the circuit structure; a second ESD protection element for an output stage of the circuit structure, the first and second protection elements having an input/output pad of the integrated circuit structure in common; a first ESD protection element between the primary supply and the primary ground; and a second ESD protection element between the secondary supply and the secondary ground.
Abstract:
An adjustable setpoint ESD core clamp for ESD protection circuits is disclosed. The core clamp includes an SCR whose P+N trigger junction is referenced to a diode stack. The SCR is non-avalanche triggered into a low impedance state at a set value of Vcc, as determined by the diode stack, which allows the ESD device to turn on at a lower voltage, thereby protecting internal circuitry.
Abstract:
An electrostatic discharge protection circuit that includes a rectifier, having an anode and a cathode, including a first p-type portion, a first n-type portion contiguous with the first p-type portion, a second p-type portion contiguous with the first n-type portion, and a second n-type portion contiguous with the second p-type portion, wherein the first p-type portion is coupled to the anode and the second n-type portion is coupled to the cathode, a first transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the first n-type portion of the rectifier, a second transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the second terminal of the first transistor, and the second terminal is coupled to the second n-type portion of the rectifier, and a voltage coupling circuit having a first terminal, a second terminal, a third terminal, and a fourth terminal, wherein the first terminal is coupled to the anode of the rectifier, the second and the third terminals are respectively coupled to the gate terminals of the first and second transistors, and the fourth terminal is coupled to the cathode.
Abstract:
An ESD protection circuit protects circuitry internal to an integrated circuit from ESD damage to electrostatic discharge voltages occurring at one or more of the inputs of the integrated circuit while maintaining substantially zero effective capacitance at the inputs. The ESD protection circuit includes a pair of diodes of opposite conductivity coupled between at least one of the inputs of the integrated circuit and an internal node thereof for providing current paths to the operating supply rails when ESD voltages occurring at the input forward bias the diodes. A unity gain amplifier provides feedback between the input and the internal circuit node to maintain a zero voltage difference therebetween whereby the effective capacitance seen at the input is reduced to substantially zero.
Abstract:
A two-stage ESD protection circuit coupled between an I/O pad and a power rail is provided in the present invention. The two-stage ESD protection circuit has a primary ESD protection circuit and a secondary ESD circuit. The trigger-on rate of the secondary ESD protection circuit is sped up by employing an ESD detection circuit coupled to the I/O pad. It can be further sped up by employing a native NMOS in the secondary ESD protection. According to the invention, the trigger-on speed of the secondary ESD protection circuit can be effectively improved to obtain better ESD protection for the thinner gate oxides of internal circuits in sub-quarter-micron CMOS process.
Abstract:
A failsafe surge protector having a reduced part count includes a line terminal, a gas tube assembly, at least one ground spring for biasing the gas tube assembly in the direction of the line terminal, and a ground terminal. The gas tube assembly includes a gas tube, a fusible solder pellet, a failsafe ground, an MOV, and an MOV spring. The surge protector provides a first electrical ground path from the line terminal to the ground terminal through the gas tube and the fusible solder pellet, and a second electrical ground path parallel to the first electrical ground path from the line terminal to the ground terminal through the MOV. When the fusible solder pellet melts, the ground spring biases the failsafe ground into electrical contact with the line terminal, thereby providing a short-circuit electrical path from the line terminal to the ground terminal through the failsafe ground.