Abstract:
Techniques are provided for synchronizing a wakeup schedule for a first module and a wakeup schedule for a CDMA module in a wireless mobile unit operable in a synchronous communication system. In one embodiment, a next CDMA wakeup time is determined. A new wakeup time for the first module can then be synchronized to a next CDMA wakeup time when a next CDMA wakeup time is earlier than a next wakeup time for the first module
Abstract:
A wireless communication apparatus receives an external signal, and includes (i) a received signal level determination section for detecting a power level of the received signal and (ii) a correlation detection/determination section for detecting a correlation associated with the received signal. Moreover, the wireless communication apparatus switches between reception standby states as required, the reception standby states, including: (a) a normal operation mode in which a shift to a reception state is determined in accordance with whether or not the correlation is detected by the correlation detection/determination section; and (b) a low power consumption mode in which the shift to the reception state is determined in accordance with whether or not a received signal power level is detected by the received signal level determination section. With this, power consumption can be reduced, but a range of reception power of a signal that can be received is not narrowed. That is, the power consumption of the communication apparatus can be reduced, and the communication apparatus is allowed to receive a signal whose reception power falls within a wide range.
Abstract:
A receiver for the CDMA system, in order to reduce a power consumption during a suspension period of intermittent receiving operation, monitors a suspension period t1 by means of a low-power timer 51 so that a VC-TCXO 1, a reference signal group generation unit 2 and a receiving unit 3 are turned off and a modem unit 4 is set to a sleep state. Upon resumption of receiving operation, a high-accuracy timer 44 is supplied with a start (d) to require counting of time t3 and a part of a received signal is stored. A PN code phase of stored data is calculated in a PN code phase calculator 46 during a period t3 to obtain an indication value i for a phase deviation. State vectors for short code and long code and further a reception time t4 are calculated on the basis of the indication value i to be set. When the high-accuracy timer 44 counts t3 and produces 0V(d), demodulation operation by a rake demodulation unit 40, a demultiplexing unit 41 and a descrambler unit 42 is started in accordance with the setting and is continued during the reception time t4.
Abstract:
Quick frequency tracking (QFT), quick time tracking (QTT), and non-causal pilot filtering (NCP) are used to detect sporadically transmitted signaling, e.g., paging indicators. For QFT, multiple hypothesized frequency errors are applied to an input signal to obtain multiple rotated signals. The energies of the rotated signals are computed. The hypothesized frequency error with the largest energy is provided as a frequency error estimate. For QTT, coherent accumulation is performed on the input signal for a first set of time offsets, e.g., early, on-time, and late. Interpolation, energy computation, and non-coherent accumulation are then performed to obtain a timing error estimate with higher time resolution. For NCP, pilot symbols are filtered with a non-causal filter to obtain pilot estimates for one antenna for non-STTD and for two antennas for STTD. The frequency and timing error estimates and the pilot estimates are used to detect the signaling.
Abstract:
In a CDMA mobile terminal, the power supply voltage of the mobile terminal is compared with a first threshold voltage, and frequency monitor is performed at a normal rate if the power supply voltage is higher than the first threshold voltage, and frequency monitor is performed at 1/N of the normal rate if the power supply voltage is lower than the first threshold voltage, where N is equal to or greater than 2. Additionally, the power level of an RF signal received by the mobile terminal is compared with a first reference level, and frequency monitor is performed at the normal rate if the power level of the RF signal is lower than the first reference level, and frequency monitor is performed at 1/N of the normal rate if the power level of the RF signal is higher than the first reference level.
Abstract:
Ending of a sleeping period is managed by, for one portion thereof, first clock signals being counted by a first clocking section, and for a remaining portion thereof, second clock signals being counted by a second clocking section. At this time, a count number by which the first clock signals are counted and a count number by which the second clock signals are counted are corrected on the basis of changes of a center of gravity in a distribution of timings of a plurality of paths.
Abstract:
A receiver for the CDMA system, in order to reduce a power consumption during a suspension period of intermittent receiving operation, monitors a suspension period t1 by means of a low-power timer 51 so that a VC-TCXO 1, a reference signal group generation unit 2 and a receiving unit 3 are turned off and a modem unit 4 is set to a sleep state. Upon resumption of receiving operation, a high-accuracy timer 44 is supplied with a start (d) to require counting of time t3 and a part of a received signal is stored. A PN code phase of stored data is calculated in a PN code phase calculator 46 during a period t3 to obtain an indication value i for a phase deviation. State vectors for short code and long code and further a reception time t4 are calculated on the basis of the indication value i to be set. When the high-accuracy timer 44 counts t3 and produces 0V(d), demodulation operation by a rake demodulation unit 40, a demultiplexing unit 41 and a descrambler unit 42 is started in accordance with the setting and is continued during the reception time t4.
Abstract:
An apparatus and a method for detecting traffic channel signal transmission in a rake receiver may advantageously ensure stable and accurate detection performance in performing continuous/discontinuous transmission detection of traffic channels with a rake receiver in a mobile communication system based upon CDMA 2000 standards by making sufficiently spaced distribution in traffic channel signal-to-noise ratios estimated in continuous/discontinuous transmission. The method includes compensating traffic channel signals according to fingers, respectively, by using estimated pilot channel signals; combining the compensated finger-based traffic channel signals and estimating signal-to-noise ratios for traffic channels; and comparing the estimated signal-to-noise ratios with a preset threshold value, respectively, to detect continuous or discontinuous transmission of the traffic channels based upon comparison results.
Abstract:
Method for reducing power consumption in Bluetooth and CDMA modes of operation is disclosed. According to a disclosed embodiment, the time for a next scheduled CDMA wakeup process to be performed by a CDMA module is established. Thereafter, if the next CDMA wakeup process is scheduled to be performed before the next Bluetooth wakeup process, a Bluetooth wakeup process is synchronized to be performed by a Bluetooth module at the same time as the next CDMA wakeup process. Following, when the time arrives for the CDMA module to perform the next CDMA wakeup process, the Bluetooth module also performs the Bluetooth wakeup process.
Abstract:
Methods and apparatus that improve interference (I) estimation in CDMA systems in which the DPCH is sorted under a scrambling code different from the scrambling code of a channel such as the CPICH are described. In such systems, DPCH I-estimation cannot be done by measuring on the CPICH and transforming to the DPCH due to the different interference situations on the two channels. Instead, the DPCH interference is estimated by using knowledge of empty channelization codes in the alternative or secondary scrambling code that can be used for I estimation, or using symbols (e.g., control symbols on the DPCCH) on the DPCH, or searching for an empty channelization code and using a found empty code for I-estimation. These techniques improve the SIR estimate in comparison to prior techniques and hence also improve the performance of power control, increasing the system's capacity.