Abstract:
A rotating anode X-ray tube includes a fixed body having a radial sliding bearing surface and a channel therein through which a coolant flows, a rotor including a discoid large-diameter portion, which has a recess fitted with one end portion of the fixed body with a clearance therebetween and constitutes an anode target, and a small-diameter portion, which has on an inner surface thereof a radial sliding bearing surface which faces the aforesaid radial sliding bearing surface with a clearance, and is united with the large-diameter portion at one end portion thereof, a lubricant filling the clearances, a cathode arranged opposite to the anode target, and a vacuum envelope which contains the fixed body, the rotor, the lubricant and the cathode, and fixes the fixed body at another end portion of the fixed body situated opposite the one end portion of the fixed body fitted in the recess.
Abstract:
A bearing assembly suitable for use in conjunction with x-ray device having a rotating target anode and electron source disposed in an evacuated enclosure. The bearing assembly includes a shaft having a rotor hub to which the anode is mounted. The shaft cooperates with front and rear bearing rings to define front and rear races, and a spacer facilitates positioning of the bearing rings. Front and rear ball sets are confined in the front and rear races, respectively. A bearing housing receives the bearing rings, spacer, front and rear ball sets, and part of the shaft. Finally, a magnet is disposed near the front bearing ring to prevent escape of foreign matter from the bearings and to prevent ingress of foreign matter to the bearings. Consequently, the magnet serves to extend the life of the bearings and to prevent foreign matter related arcing of the target anode and electron source.
Abstract:
A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A coating is deposited on one of the bearing race and the bearing ball includes a lubricant and a hard material having a hardness greater than a base material of the bearing race and a base material of the bearing ball.
Abstract:
An x-ray tube having a liquid lubricated bearing assembly and a liquid cooled anode target. The anode target and bearing assembly having increased lubrication and cooling to withstand higher power, higher temperature and higher load applications.
Abstract:
A bearing assembly for an x-ray tube is disclosed that includes a bearing race, a bearing ball positioned adjacent to the bearing race, and a combination coating deposited on one of the bearing race and the bearing ball. The combination coating includes titanium carbide and a solid lubricant.
Abstract:
A method for manufacturing an x-ray tube bearing cage includes the step of forming a bearing cage from a carbon-carbon composite material. A coating is applied to the carbon-carbon composite bearing cage. The coating includes an outer layer formed of a dry film lubricant. The coated carbon-carbon composite bearing cage is included in a bearing assembly in the x-ray tube and forms a lubricious enclosure for bearing balls positioned therein to minimize wear and heat generation in the bearing assembly.
Abstract:
A bearing assembly mounted in an x-ray tube includes a bearing race and a plurality of bearing balls positioned adjacent to the bearing race. The plurality of bearing balls are positioned within a bearing cage. The bearing cage is configured to evenly space the bearing balls within the bearing cage and prevent contact between adjacent bearing balls, thereby eliminating the problems of skidding wear and dynamic impact load between adjacent bearing balls in the bearing assembly.
Abstract:
In a first rolling bearing of this X-ray tube apparatus, an ion nitriding layer is formed on a raceway surface of an inner ring, and an ion nitriding layer is formed on a raceway surface of an outer ring. As the results, surface hardness of the raceway surface of the inner ring and the raceway surface of the outer ring is enhanced, and abrasion resistance can be improved. On the other hand, in a second rolling bearing, an ion nitriding layer and a diamond-like carbon film are successively formed on a raceway surface of an inner ring, and an ion nitriding layer and a diamond-like carbon film are successively formed on a raceway surface of an outer ring. As the results, the second rolling bearing which is positioned closer to the target has a double hardening structure.