Abstract:
From at least a first microphone, first microphone signals are received that represent first sound waves. From at least a second microphone, second microphone signals are received that represent second sound waves. In response to the first microphone signals, first noise in the first sound waves is estimated, and first cancellation signals are output for causing a speaker array to generate first additional sound waves via at least a first acoustic beam for cancelling at least some of the first noise. In response to the second microphone signals, second noise in the second sound waves is estimated, and second cancellation signals are output for causing the speaker array to generate second additional sound waves via at least a second acoustic beam for cancelling at least some of the second noise.
Abstract:
This document discusses, among other things, systems and methods for active noise cancellation. One example system includes a digital ANC circuit configured to receive first audio information from a first microphone and to produce an a digital anti-noise signal configured to attenuate noise sensed by the first microphone; an analog ANC circuit configured to receive second audio information from a second microphone and to produce an analog anti-noise signal configured to attenuate noise sensed by the second microphone; and wherein the system is configured to receive an intended audio signal and to provide an output signal for a speaker using the intended audio signal, the analog anti-noise signal, and the digital anti-noise signal.
Abstract:
Robust feedforward active noise cancellation is provided which can overcome or substantially alleviate problems associated with the diverse and dynamic nature of the surrounding acoustic environment. A multi-faceted analysis is performed to determine the direction (or directions) of propagation of noise in the surrounding acoustic environment. The direction of propagation is then utilized to determine direction-dependent characteristics of the acoustic path between a reference position where the noise is captured and a desired position where the noise is to be cancelled. These characteristics are used to form a feedforward signal adapted to cancel the noise at the desired position. By forming the feedforward signal based on direction-dependent characteristics of the acoustic path, the techniques described herein can achieve optimal noise cancellation at the desired location, regardless of the direction of propagation of the noise.
Abstract:
An active noise cancellation device and method for reducing fan blade noise over a broad spatial area. The device comprises a microphone, a band pass filter, and audio amplifier, and a speaker array. The microphone captures the sound produced by the fan and converts it into an electrical signal. This electrical signal is input to the band pass filter which has a center frequency equal to product of fan speed and the number of fan blades which comprise the fan. The band pass filter attenuates any signals other than the primary harmonic sound produced by the rotating fan blades. The filtered signal from the band pass filter is input to the audio amplifier. The audio amplifier conditions the signal for input to the speaker array. Accordingly, each speaker in the array receives and outputs an audio signal of equal amplitude and phase as that produced by the rotating fan blades. The speaker array is mounted on or close to the fan hub in a symmetric pattern commensurate with the fan blade geometry. In general, the number of speakers which comprise the array corresponds to the number of fan blades. The position of the speaker array is adjusted until a maximum destructive interference occurs between the sound produced by the rotating fan blades and the speaker array. With the addition of a phase shifter, the active noise cancellation device can be utilized to provide noise cancellation for variable speed fans.
Abstract:
A microphone apparatus comprises two non-directional microphones in case of monaural sound pickup or three non-directional microphones in case of stereo sound pickup, and a signal processing means for processing output signals of the non-directional microphones so that a directivity becomes non-directional in a low frequency region and a first order pressure gradient type in a high frequency region. Accordingly, the microphone apparatus can attenuate the level of unwanted acoustic and vibration noises caused by its onboard moving mechanism as well as wind noise, thus ensuring no declination in the S/N ratio during sound pickup action.
Abstract:
The disclosed computer-implemented method may include applying, via a sound reproduction system, sound cancellation that reduces an amplitude of various sound signals. The method further includes identifying, among the sound signals, an external sound whose amplitude is to be reduced by the sound cancellation. The method then includes analyzing the identified external sound to determine whether the identified external sound is to be made audible to a user and, upon determining that the external sound is to be made audible to the user, the method includes modifying the sound cancellation so that the identified external sound is made audible to the user. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A system for self-organized acoustic signal cancellation over a network is disclosed. The system may transmit an acoustic sounding signal to an interfering device so that a channel measurement may be performed for a channel between the interfering device and an interferee device. The system may receive the channel measurement for the channel from the interfering device and also receive a digitized version of an audio interference signal associated with the interfering device. Based on the channel measurement and the digital version of the interference signal, the system may calculate a cancellation signal prior to the arrival of the original over-the-air audio interference signal that corresponds to the digital version of audio interference signal. The system may then apply the cancellation signal to an audio signal associated with the interferee device to remove the interference signal from the audio signal.
Abstract:
A speech reproduction device for reproducing speech based on a received speech signal so that the reproduced speech is intelligible in a clear speech zone and unintelligible in a masked speech zone includes an audio processing module configured for receiving the speech signal; a set of speech loudspeakers configured for reproducing the speech based on one or more speech loudspeaker signals; and a set of masking sound loudspeakers configured for producing a masking sound based on one or more masking sound loudspeaker signals, wherein the masking sound masks the speech in the masked speech zone; wherein the audio processing module includes a speech signal analysis module configured for producing one or more analysis signals based on spectral and/or temporal characteristics of the speech signal; wherein the audio processing module includes a masking sound generator configured for producing one or more masking sound signals based on the one or more analysis signals.
Abstract:
The invention relates to a system for masking a sound incident on a person. The system comprises a microphone sub-system for capturing the sound. The system further comprises a spectrum-analyzer for determining a power attribute of the sound captured by the multiple microphone sub-system, and a spatial analyzer for determining a directional attribute of the captured sound representative of a direction of incidence on the person. The system further comprises a generator sub-system for generating a masking sound under combined control of the power attribute and the spatial attribute, for masking the incident sound.
Abstract:
From inputs received at one or more processors, a background audio signal representing background sound is separated from a primary audio signal. The primary audio signal is output with the background audio signal or an altered version thereof according to a user selection between noise cancellation and ambient sound reproduction. More specifically, when the user selection is for noise cancelation, the primary and background audio signals are output with a first altered version of the background audio signal (for example, having inverted phase so as to destructively interfere with the background audio signal); and when the user selection is for ambient sound reproduction, the primary audio signal is output with the background audio signal or a second altered version of the background audio signal (such as a pseudo-acoustic representation of the background sound). One example embodiment is a headset with microphones and speakers for the respective inputs and outputs.