Abstract:
Fluorescing highlights can be provided in selected portions of non-color image areas of a printed toner image using fused fluorescing dry toner particles, such as fused fluorescing magenta or fused fluorescing yellow dry toner particles. Before fixing, each fluorescing dry toner particle comprises a polymeric binder phase and a fluorescing colorant that emits at one or more λmax wavelengths of at least 420 nm and up to and including 690 nm and that is dispersed within the polymeric binder phase. The resulting printed color images and fluorescent highlights can be provided on receiver materials of various types to accentuate or emphasize the printed color images with a variety of light-colored fluorescent shading.
Abstract:
A two-component color developer containing a toner and a resin-coated carrier, the toner containing at least a polyester resin as a binding resin, an organic pigment as a colorant and inorganic fine particles as an external additive, wherein the inorganic fine particles have a negative polarity, the toner has a volume resistivity of 40×109 to 220×109 Ωcm and a negative polarity, and the carrier has a coat durability of 90% or greater.
Abstract:
Provided is a toner for which the heat-resistant storability and the low-temperature fixability are able to co-exist at higher levels and for which the temporal stability of the low-temperature fixability is also excellent. The toner has a toner particle that contains a binder resin and a pigment, and this binder resin contains a polyester resin that has a specific structure and specific properties.
Abstract:
A toner including a resin; and a colorant wax comprising a plurality of colorant wax particles comprising a colorant core surrounded by a wax shell, wherein the colorant wax particles exhibit a particle size distribution of from about 150 nanometers to less than about 300 nanometers; and wherein the colorant wax is prepared by (a) melting and mixing a dry colorant with at least one wax to form a colorant concentrate, wherein the colorant concentrate contains at least 25 percent by weight of colorant; (b) milling the colorant concentrate of step (a) to form a milled colorant concentrate; (c) combining the milled colorant concentrate of (b) with water and dispersing to form the plurality of colorant wax particles; wherein the melting and mixing of step (a) and the milling of step (b) is done in an immersion media mill; and wherein the combining of step (c) is done using a piston homogenizer.
Abstract:
A toner, including: base particles containing a polyester resin, a colorant, and a release agent, wherein the toner has a glass transition temperature (Tg1st) of 20° C. to 50° C. where the glass transition temperature (Tg1st) is measured in first heating of differential scanning calorimetry (DSC) of the toner, wherein tetrahydrofuran (THF) insoluble matter of the toner has a glass transition temperature [Tg2nd (THF insoluble matter)] of 30° C. or lower where the glass transition temperature [Tg2nd (THF insoluble to matter)] is measured in second heating of differential scanning calorimetry (DSC) of the THF insoluble matter, and wherein 50% or less of the colorant is present within a region of 1,000 nm from a surface of each of the base particles toward a center thereof.
Abstract:
A fluorescing dry toner particle comprises a polymeric binder phase comprising a non-fluorescing binder polymer and a polymeric fluorescing colorant dispersed within the non-fluorescing binder polymer. The polymeric fluorescing colorant comprises a fluorescing moiety that is covalently attached to a colorant polymer that is the same or different than the non-fluorescing binder polymer, but the polymeric fluorescing colorant is blendable with the non-fluorescing binder polymer to form a homogeneous polymeric binder matrix, and is present in an amount of at least 1 weight % and up to and including 40 weight %, based on the total fluorescing dry toner particle weight. These fluorescing dry toner particles can be used in various dry developers to provide fluorescing toner images with or without non-fluorescing color toner images.
Abstract:
The present invention relates to toner for electrostatic charge image development including a resin, a metal-containing compound, and a colorant compound precursor to be converted to a colorant compound through a reaction with the metal-containing compound by heat applied at heat fixing. According to the present invention, it is possible to provide toner for electrostatic charge image development which is excellent in fluidity and storage stability and a method of manufacturing the same.
Abstract:
A toner set for electrostatic image development includes a cyan toner, a magenta toner, and a yellow toner, wherein the Vicat softening temperatures of the toners are respectively in the range of from about 30° C. to about 60° C., and among the toners, the difference between the Vicat softening temperature of the toner having the highest Vicat softening temperature and the Vicat softening temperature of the toner having the lowest Vicat softening temperature is from about 1° C. to about 5° C.
Abstract:
Fluorescing highlights can be provided in selected portions of non-color image areas of a printed toner image using fluorescing dry toner particles, such as fluorescing magenta and fluorescing yellow dry toner particles. Before fixing, each fluorescing dry toner particle comprises a polymeric binder phase and a fluorescing colorant that emits at one or more λmax wavelengths of at least 420 nm and up to and including 690 nm and that is dispersed within the polymeric binder phase.
Abstract:
Disclosed is a green toner for developing a static latent image containing a binder resin and a colorant, and the colorant contains C.I. Solvent Green 5 and colorant compound X represented by Formula (1), and content ratio of C.I. Solvent Green 5 in whole amount of the colorant is 5 to 50% by weight, in the Formula (1), M1 is a metal atom of Group 14, Q is independently a monovalent substituent, m and n are each 0 or 1, at least one of m and n is 1, and A is independently an atomic group forming an aromatic ring which may have a substituent.