Abstract:
A radiation clinical thermometer includes a probe, a detection signal processing section, a body temperature operating section, and a display unit. A filter correction section for setting a correction value based on the transmission wavelength characteristics of a filter is arranged. The body temperature operating section receives infrared data, temperature-sensitive data, and the correction value from the filter correction section so as to calculate body temperature data.
Abstract:
A reflection densitometer includes a light source and a photodetector having an output which has a signal component characteristic of the amount of reflected light received from a surface to be measured and a noise component. The noise component of the output is isolated in time by switching the light source on and off so as to create alternating first and second time periods during which the output of the photodetector is characteristic of only the noise component and in which the output of the photodetector is characteristic of both the signal component plus the noise component, respectively. The output of the photodetector during the second time period is subtracted from the output during the first time period to obtain a signal characteristic of only the output of the photodetector characteristic of relected light received. The signal is held constant during the first and second periods by a sample and hold circuit adapted to sample the signal during the second periods and to hold the sampled signal during the first periods.
Abstract:
An apparatus for determining the concentration of a light-absorbing material contained in blood flowing through a tissue which minimizes the amount of error caused by noise and which ensures highly precise results at all times. The apparatus operates according the principle that light beams of different wavelengths are absorbed by different amounts when passing through the tissue at different portions of the blood pulsation cycle. A plurality of points are detected that fall in the vicinity of the peak and trough of a cycle of a light detection signal. For each wavelength of light, the values of the detection signals produced at each of these points in time is stored. The concentration of the light-absorbing material is computed in response to the stored detection signals.
Abstract:
The invention provides a new method and apparatus for measuring the concentration of ultra-violet light absorbing organic materials liquids, particularly in pure or ultra-pure water, the speed and convenience being such that it is possible to take successive readings with periods as short as ten seconds. The apparatus can be mounted directly in or as a by-pass to a process stream, giving the capability of constant monitoring with virtually instant microprocessor-controlled response to measurements outside a pre-set range. The water to be measured passes upwards in a cylindrical opaque-walled sample cell at the upper end of which is mounted an intense light source, preferably a Xenon flash tube, and at the lower end of which is mounted two transmission photodetectors, which have in front of them respective narrow-band optical transmission filters in the ultra-violet and visible regions. The light source sits on the upper end of a quartz rod which extends into the cell at or below the water inlet and is coaxial with the cell longitudinal axis, the rod serving to direct the light toward the transmission photodetectors. The output from the "visible" photodetector is used to correct the output from the "ultraviolet" photodetector for transmission losses caused by particulates, element fouling and bubbles in the stream. Two reference photodetectors employing two similar transmission filters are disposed close to the flash tube outlet window and their signals are used to correct for variation in the flash tube output.
Abstract:
A light detection method for a light detection device is provided. The light detection device includes multiple scan lines and multiple light sensing elements. Each of the light sensing elements is coupled to a corresponding one of the scan lines. The light detection method includes: in a detection mode, sequentially scanning a first scan line to a (N+1)th scan line among the scan lines, wherein a Nth scan line is not adjacent to at least one of a (N−1)th scan line and the (N+1)th scan line; reading signals of the light sensing elements coupled to the first scan line to the (N+1)th scan line; determining whether the signals meet an exposure standard; and controlling the light detection device to enter a value reading mode when the signals meet the exposure standard.
Abstract:
Provided are a distance-measuring device and a method thereof. The distance-measuring device detects light reflected by an object and converts the light into electrical signals, outputs a saturation signal equal to or greater than a reference value from among the electrical signals, detects a peak using the saturation signal, and measures a distance to the object using the peak.
Abstract:
Presented here are devices and methods to correct ambient light measurements made in the presence of optical elements, such as the curved edge of the cover glass associated with the mobile device. In one embodiment, a film with optical properties is placed within the ambient light sensor to diffuse the high-intensity light beam coming from the optical element. In another embodiment, an aperture associated with the ambient light sensor is disposed to prevent the high-intensity light beam from entering the ambient light sensor. In another embodiment, a processor coupled to the ambient light sensor smooths the peak associated with the high intensity light beam produced by the optical element.
Abstract:
Presented here are devices and methods to correct ambient light measurements made in the presence of optical elements, such as the curved edge of the cover glass associated with the mobile device. In one embodiment, a film with optical properties is placed within the ambient light sensor to diffuse the high-intensity light beam coming from the optical element. In another embodiment, an aperture associated with the ambient light sensor is disposed to prevent the high-intensity light beam from entering the ambient light sensor. In another embodiment, a processor coupled to the ambient light sensor smooths the peak associated with the high intensity light beam produced by the optical element.
Abstract:
An infrared detection device that can detect movement, a temperature, and a stationary state of a detection object with a simple configuration is provided.The infrared detection device includes a pyroelectric infrared sensor (11), peak detecting means (12) for an electric signal waveform, peak inclination amount detecting means (13) for an electric signal waveform, peak value holding means (14) for an electrical signal waveform, and determining means (15), the sensor (11) outputs an electric signal depending on change in an infrared ray resulting from a detection object, the peak detecting means (12) detects a peak of a temporal waveform of an electric signal output by the sensor (11), the peak inclination amount detecting means (13) detects an inclination amount of a peak detected by the peak detecting means (12), the peak value holding means (14) holds an initial peak value when the detection object enters a detection region of the sensor (11), for a peak detected by the peak detecting means (12), and the determining means (15) determines entry of the detection object to and exit of the detection object from the detection region, a movement speed and a temperature of the detection object, and movement and motionlessness of the detection object in the detection region.