Abstract:
A system and method for printer control and color balance calibration. The system and method address the image quality problems of print engine instability, low quality of color balance and contouring from the calibration. The method includes defining combinations of colorants, such as inks or toners that will be used to print images, defining a desired response for the combinations that are to be used and, in real time, iteratively printing CMY halftone color patches, measuring the printed patches via an in situ sensor and iteratively performing color-balance calibration based on the measurements, accumulating corrections until the measurements are within a predetermined proximity of the desired response. The calibration is performed on the halftones while they are in a high quantization resolution form.
Abstract:
Methods and apparatus for spectrally-encoding plural source images and for providing the spectrally-encoded plural source images in a composite image, for rendering the composite image in a physical form, or for recovering at least one of the encoded source images from the rendered composite image such that the recovered source image is made distinguishable. The composite image is generated using an image-dependent dynamic range determination so as to provide a maximum usable contrast in a recovered source image.
Abstract:
Methods and apparatus for spectrally-encoding plural source images and for providing the spectrally-encoded plural source images in a composite image, for rendering the composite image in a physical form, or for recovering at least one of the encoded source images from the rendered composite image such that the recovered source image is made distinguishable. Stereogram generation techniques can be employed to provide the image content of one or more stereogram source images encoded in the composite image. When the composite image is subjected to illumination by a narrow band illuminant, an observer can identify the pattern correspondence necessary for comprehending the image content of the stereogram source image.
Abstract:
Methods and systems for dewarping images allow a user to reduce distortion in scanned images. A scanned image is processed using an optics model and an illumination model, and resampled to reduce distortion. The dewarping may be improved through iterative operations where a model parameter is varied. An optimal image is obtained which corresponds to a maximum metric as a measure of the quality of a resampled image.
Abstract:
A method of correcting illumination variation in a scanned image of a non-planar original object, such as an open book, includes scanning at least a portion of the book in order to produce scanned image data. Illumination variation data is extracted from the scanned image data and used to derive a plurality of illumination compensation values. The scanned image data is then compensated or scaled in accordance with the illumination compensation values. Illumination data is acquired through a sampling window having a long and thin geometry. From the data acquired via the sampling window, foreground and background illumination distributions are defined. From the foreground and background illuminations, high and low threshold values are determined in order to calculate a set of reference or compensation values. A tone reproduction curve is generated in order to map the scanned data, thus normalizing the illumination variation. Alternately, an illumination gain factor is employed in the compensation.
Abstract:
A method of estimating local defocus distance from a conventionally scanned image is provided. More particularly, the method of estimating defocus distance in a scanned image of a non-planar original object, such as an open book, includes scanning at least a portion of the book in order to produce scanned image data. An image feature obtainable from the scanned image data and a quantitative metric corresponding to the image feature are selected. Image feature data is extracted from the scanned image data and compared to a predetermined calibration relationship between the selected image feature and defocus distance in order to calculate a plurality of defocus distances, which are organized into a defocus distance map. The defocus distance map may be used in the subsequent correction of geometric distortions, blurring defects, and illumination variations adjacent the binding of an open book.
Abstract:
A xerographic marking device includes a source of pixels representative of digitized image information. A rendering image processor analyzes the pixels for an image characteristic, and based on the analysis assigns one of at least three values to each pixel. The three values are selected from a set of values representing positive, negative or neutral relative to a predetermined exposure bias. The device also includes an imaging output device which converts the values assigned to the pixels into areas of selective exposure on a charge retentive surface. A charge on the charge retentive surface such as a photoreceptor accordingly, includes an area of positive charge determined to electrostatically react with a charged monochrome marking agent or toner in a first manner, for example by attraction. The charge also includes a negative charge area which is determined to electrostatically react with the toner in an opposite manner, for example to repel toner. Optionally, the charge also includes an overshoot or super positive/super-negative area. The overshoot areas have stronger electrostatic reactions with the toner than their corresponding positive/negative charges.
Abstract:
Methods and systems for spectrally-encoding plural source images and for providing the spectrally-encoded plural source images in a composite image, for rendering the composite image on a substrate, and for recovering at least one of the encoded source images from the rendered composite image. A desired source image is recovered when the rendered composite image is subjected to illumination by one or more illuminants and the desired source image is detected by one or more sensors in an image capture device. The spectral characteristics of the colorants, illuminants, and sensors are employed to spectrally encode the source image in the composite image.
Abstract:
Methods and apparatus for spectrally-encoding plural source images and for providing the spectrally-encoded plural source images in a composite image, for rendering the composite image in a physical form, or for recovering at least one of the encoded source images from the rendered composite image such that the recovered source image is made distinguishable. For example, when the rendered composite image is subjected to illumination by one of the narrow band illuminants for which a source image was encoded, the source image becomes visually detectable by an observer.
Abstract:
Selective edge softening and selective edge dithering is introduced into an image representation to improve local control where halo problems are expected. Selective areas of dilation are isolated and separately dithered or halftoned, the result of which is then swapped back into or substituted for the stored original image. In this manner misregistration and color plane-to-plane interactions can be compensated for in plural image forming station architecture systems. The same technique is also valuable in monochrome systems as an aid to overcoming edge displacement and slow toner problems when the selective edge softening is selectively applied to edges which are in particular perpendicular to the fast scan direction.