Abstract:
A non-metallic engine case inlet compression seal for a gas turbine engine includes a non-metallic longitudinal leg section that extends from the non-metallic arcuate interface section and a non-metallic mount flange section that extends from the longitudinal leg section.
Abstract:
A gas turbine engine includes a fan rotating structure including a plurality of fan blades supported on a hub that defines a frontal area. A turbine section drives the fan through a geared architecture about the axis. The fan rotating structure includes a weight of the fan rotating structure relative to the frontal area that enables improvements in engine operating and propulsive efficiencies.
Abstract:
A system for retaining stators and reducing air leakage in a gas turbine engine having an axis includes a stator having an inner platform, an outer platform, a low pressure side, a high pressure side, and at least one foot, and designed to turn air. The system also includes a case positioned radially outward from the stator and having at least one recess designed to interface with the at least one foot to resist movement of the stator relative to the case. The system also includes a bladder positioned between the outer platform of the stator and the case and designed to receive pressurized fluid having a greater pressure than ambient pressures experienced at the low pressure side of the stator and to further resist movement of the stator relative to the case in response to receiving the pressurized fluid.
Abstract:
An acoustic liner for a gas turbine engine includes an acoustic panel that is curved about a central axis. The acoustic panel includes a support backing, a face sheet, and a cellular structure disposed between the support backing and the face sheet. The face sheet has elongated slots that extend along respective slot centerlines in the plane of the face sheet. The slot centerlines are sloped at oblique angles to the central axis.
Abstract:
A gas turbine engine section includes a plurality of spaced rotor stages, with a static guide vane intermediate the spaced rotor stages. The static guide vane provides swirl into air passing toward a downstream one of the spaced rotor stages, and an outer housing surrounding the spaced rotor stages. A diverter diverts a portion of air radially outwardly through the outer housing, and across at least one heat exchanger. The diverted air passes back into a duct radially inwardly through the outer housing, and is exhausted toward the downstream one of the spaced rotor stages.
Abstract:
Disclosed is an assembly for a gas turbine engine, the assembly includes: a spinner or nosecone comprising a threaded rear portion, an engine structure comprising a threaded front portion, the nosecone being threadingly connected to the engine structure, wherein rotation of the spinner or nosecone about the engine structure in a first direction secures the spinner or nosecone to the engine structure and rotation of the spinner or nosecone about the engine structure in a second direction releases the spinner or nosecone from the engine structure; and a lock ring slidingly connected to the engine structure to slide between: a forward position to engage the spinner or nosecone and block rotation of the spinner or nosecone in the second direction, and a rearward position, where the lock ring is spaced from the spinner or nosecone.
Abstract:
A turbine engine is disclosed and includes an airflow passage including an inner surface defined by a main shroud and a shroud extension. A flow splitter is disposed radially outward of the inner surface and axially overlapping the shroud extension. The turbine engine further includes a rotor including a blade proximate the shroud extension and an annular gap defined between the shroud extension and the blade of a first axial length less than a second axial length between the blade and an end of the flow splitter.
Abstract:
A propulsive engine rotor configured for operation within a gas turbine includes a plurality of spaced airfoil blades circumferentially affixed to an outer hoop-style rim. At least two of the airfoil blades have an integral root configured to extend either through or at least radially inwardly from the rim. A woven fiber system provides that the blade roots are interdigitally wrapped by a plurality of woven fibers before impregnation and/or encapsulation of the fibers and wrapped roots within a ceramic or other composite matrix material to form a composite ring. The composite ring defines the interior body of the rotor, includes a bore through which passes the rotational axis of the rotor, and has a lower mass than the rotor rim. The woven fiber interface between the roots increases the tensile load capacity of the airfoil blades relative to the composite ring, and increases the self-sustaining radius of the rotor.
Abstract:
According to one aspect of the present disclosure, a gas turbine engine is disclosed that includes an engine section comprising a plurality of stages of variable vanes, and also includes first and second synchronizing rings (sync-rings). Movement of the first sync-ring adjusts vane angles of a first one of the stages of variable vanes, and movement of the second sync-ring adjusts vane angles of a second one of the stages of variable vanes. At least one sensor is configured to measure a condition of the gas turbine engine. A controller is configured to move the first sync-ring independently of the second sync-ring based on data from the at least one sensor.
Abstract:
A turbine engine is disclosed and includes an airflow passage including an inner surface defined by a main shroud and a shroud extension. A flow splitter is disposed radially outward of the inner surface and axially overlapping the shroud extension. The turbine engine further includes a rotor including a blade proximate the shroud extension and an annular gap defined between the shroud extension and the blade of a first axial length less than a second axial length between the blade and an end of the flow splitter.