Abstract:
A method for optimizing data retry mechanisms is described. The method includes attempting to originate a data call on an evolved high rate packet data system. The method also includes determining that originating the data call has failed. A type of failure that caused the data call to fail is determined. The frequency of data call origination attempts is reduced based on the type of failure.
Abstract:
Architecture for performing WLAN offload in a wireless device is disclosed. In an exemplary embodiment, an apparatus includes an application section configured to form IP packets from data to be transmitted, a modem section configured to apply a cellular protocol to the IP packets to form cellular protocol packets, an endpoint configured to encapsulate the cellular protocol packets to form outer IP tunnel packets, and a WLAN interface configured to transmit the outer IP tunnel packets over a WLAN communication channel. In another exemplary embodiment, an apparatus includes a WLAN interface configured to receive outer IP tunnel packets over a WLAN communication channel, an endpoint configured to extract cellular protocol packets from the outer IP tunnel packets, a modem processor configured to remove a cellular protocol from the cellular protocol packets to form IP packets, and an application processor configured to extract received data from the IP packets.
Abstract:
Systems, methods and apparatus described herein include features that enable efficient management of keep-alive messages utilized to maintain IP addresses and/or PDN connections associated with idle data traffic channels. An access terminal may consolidate keep-alive messages for idle data traffic channels, reducing the number of keep-alive messages transmitted. An access terminal may select which idle data traffic channels to maintain, and may transmit a consolidated keep-alive message for associated IP addresses and/or PDN connections. Timers may be associated with PDN connections and sub-timers may be associated with IP addresses associated with a PDN connection. Keep-alive messages can be consolidated based on the timers, sub-timers and/or combination of timers and sub-timers. In a complementary method, a PDN gateway or other network node cooperates with access terminals to reduce network traffic. In another complementary method, the PDN gateway or other network node synchronizes the timers and/or sub-timers provided with an access terminal.
Abstract:
Aspects of the present disclosure provide techniques for preventing loss of IP continuity when transitioning between networks. Certain aspects provide methods that generally include initiating a first timer upon attempting to transition from a first RAT network to a second RAT network during an IP session and initiating a second timer if a channel in the second RAT network is successfully acquired. According to aspects, a device may transfer context of the IP session to the second RAT network if a session is successfully negotiated in the second network prior to expiration of the second timer and the first and second networks share a common core network for IP services.
Abstract:
Architecture for performing WLAN offload in a wireless device is disclosed. In an exemplary embodiment, an apparatus includes an application section configured to form IP packets from data to be transmitted, a modem section configured to apply a cellular protocol to the IP packets to form cellular protocol packets, an endpoint configured to encapsulate the cellular protocol packets to form outer IP tunnel packets, and a WLAN interface configured to transmit the outer IP tunnel packets over a WLAN communication channel. In another exemplary embodiment, an apparatus includes a WLAN interface configured to receive outer IP tunnel packets over a WLAN communication channel, an endpoint configured to extract cellular protocol packets from the outer IP tunnel packets, a modem processor configured to remove a cellular protocol from the cellular protocol packets to form IP packets, and an application processor configured to extract received data from the IP packets.
Abstract:
Systems, methods and apparatus described herein include features that enable efficient management of keep-alive messages utilized to maintain IP addresses and/or PDN connections associated with idle data traffic channels. An access terminal may consolidate keep-alive messages for idle data traffic channels, reducing the number of keep-alive messages transmitted. An access terminal may select which idle data traffic channels to maintain, and may transmit a consolidated keep-alive message for associated IP addresses and/or PDN connections. Timers may be associated with PDN connections and sub-timers may be associated with IP addresses associated with a PDN connection. Keep-alive messages can be consolidated based on the timers, sub-timers and/or combination of timers and sub-timers. In a complementary method, a PDN gateway or other network node cooperates with access terminals to reduce network traffic. In another complementary method, the PDN gateway or other network node synchronizes the timers and/or sub-timers provided with an access terminal.
Abstract:
Aspects of the present disclosure provide techniques for preventing loss of IP continuity when transitioning between networks. Certain aspects provide methods that generally include initiating a first timer upon attempting to transition from a first RAT network to a second RAT network during an IP session and initiating a second timer if a channel in the second RAT network is successfully acquired. According to aspects, a device may transfer context of the IP session to the second RAT network if a session is successfully negotiated in the second network prior to expiration of the second timer and the first and second networks share a common core network for IP services.
Abstract:
During inter-radio access technology (IRAT) handover between LTE and eHRPD technologies, Internet protocol (IP) service continuity at a user equipment (UE) may be maintained. Thus, a method, an apparatus, and a computer program product are provided for maintaining the IP service continuity during IRAT handover from an SRAT to a TRAT within an evolved packet core (EPC)—capable region. The apparatus attempts to transfer an EPC context to a TRAT, determines that a failure occurs when attempting to transfer the EPC context to the TRAT, and attempts to maintain at least one IP service continuity within the EPC context according to the failure. The attempt to maintain may include an attempt to maintain an entire EPC context or a set of parameters including at least one of an IP address, a domain name system (DNS) address, a proxy call session control function (P-CSCF) address, or a quality of service (QoS).
Abstract:
A method is performed by a device. The method includes determining whether the device is allowed to attach to an operator network based at least partially on whether all access point names in a minimum access point name list are enabled in the device. The device allows itself to attach to the operator network if it is determined that the device is allowed to attach to the operator network. The device prevents itself from attaching to the operator network if it is determined that the device is not allowed to attach to the operator network. The device can wirelessly receive a command to disable an access point name in the device. If an access point name on a detach access point name list is disabled, then the device detaches from the operator network and prevents itself from reattaching until an integrated circuit card in the device is removed and replaced.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, wherein distinct port partitions are assigned to processing entities on a user equipment device. Doing so provides the processing entities with concurrent access to the single PDN connection.