Abstract:
A method for separating a thin glass sheet, such as a glass film along a predefined cutting line provides the cutting line immediately has a temperature of greater than 250 K below the transformation point Tg of the glass of the thin sheet of glass, including the input of energy along the cutting line using a laser beam which acts such that a separation of the thin glass sheet occurs.
Abstract:
A method for producing thing glass strips is provided that avoids camber defects. The method includes using a glass strip forming device that has a drawing device; drawing, using the drawing device, the thin glass strip away from the glass strip forming device; measuring, using a measuring device, variables that are dependent on a differing length of edges of the thin glass strip at at least two measurement locations spaced apart transversely to a longitudinal extension of the thin glass strip; determining a difference or a quotient of the variables. The difference or the quotient is used to determine a control variable by which the glass strip forming device is controlled so as to counteract a difference in velocities of the thin glass strip between the two opposite edges.
Abstract:
A glass roll includes at least one glass film and one intermediate material one on top of the other in at least two layers onto a winding core. The glass film layers are held in place by the intermediate material layers. The glass roll is produced with a method including provision of a glass film, a winding core and a compressible intermediate material. At least one inside layer of the intermediate material is wound onto the winding core. The glass film and the intermediate material are wound onto the winding core in such a manner that the glass film is wound onto the winding core in alternating layers with the intermediate material. The intermediate material and/or the glass film is wound at a tensile stress acting in a longitudinal direction which causes a compression of the intermediate material and holds the glass film end in place on the glass roll.
Abstract:
A method for cutting a thin glass including the steps of guiding, by a transport device, the thin glass ribbon over a levitation support, and directing, within a range of the levitation support, a laser beam onto the thin glass ribbon, which heats up the thin glass ribbon at an impingement point of the laser beam. The method also includes the step of blowing, by a cooling jet generator, a cooling fluid onto the track heated by the laser beam so that a region heated by the laser beam is cooled down and a mechanical stress is created. The cooling fluid contains vapor of a liquid at a saturation ratio of at least 0.5 or a plurality of liquid droplets. The liquid droplets form a contact angle on a surface of the thin glass ribbon which is smaller than that of water on the same surface.
Abstract:
A method for cutting a thin glass including the steps of guiding, by a transport device, the thin glass ribbon over a levitation support, and directing, within a range of the levitation support, a laser beam onto the thin glass ribbon, which heats up the thin glass ribbon at an impingement point of the laser beam. The method also includes the step of blowing, by a cooling jet generator, a cooling fluid onto the track heated by the laser beam so that a region heated by the laser beam is cooled down and a mechanical stress is created. The cooling fluid contains vapor of a liquid at a saturation ratio of at least 0.5 or a plurality of liquid droplets. The liquid droplets form a contact angle on a surface of the thin glass ribbon which is smaller than that of water on the same surface.
Abstract:
A method for producing long-term bendable glass material includes: bending a glass material in a bending radius in a range of 1 mm to 107 mm; storing the bent glass material for a time period of at least 1 day; inspecting at least a portion of the bent glass material for damage after the storing; and classifying the inspected bent glass material as a reject if damage is detected or as a long-term bendable glass material if no damage is detected.
Abstract:
A method and apparatus for scoring thin glass for the purpose of score and break separation as well as an accordingly prepared scored thin glass are provided. The scoring tool is pressed onto the thin glass and drawn along the scoring line with an adjusted scoring contact pressure force as a vertical scoring force component. This permits to production of prescored ultrathin glass of Knoop hardness from 350 to 650 with a score depth from 1/20 to ⅘ of the material thickness.
Abstract:
A long-term bendable glass material includes a glass material having a bending radius in a range of 1 mm to 107 mm. The glass material is structured such that a number of breaks developing over a course of time after a storage period of at least one day displays a remaining probability of breaking of less than 0.1 for a storage time period of a maximum of half a year.
Abstract:
A glass roll includes at least one glass film and one intermediate material one on top of the other in at least two layers onto a winding core. The glass film layers are held in place by the intermediate material layers. The glass roll is produced with a method including provision of a glass film, a winding core and a compressible intermediate material. At least one inside layer of the intermediate material is wound onto the winding core. The glass film and the intermediate material are wound onto the winding core in such a manner that the glass film is wound onto the winding core in alternating layers with the intermediate material. The intermediate material and/or the glass film is wound at a tensile stress acting in a longitudinal direction which causes a compression of the intermediate material and holds the glass film end in place on the glass roll.