Abstract:
The radiographic image generation method includes acquiring a plurality of radiographic images corresponding to a number of radiation dose portions by emitting radiation to an object by dividing a radiation exposure dose into the radiation dose portions, and by detecting the emitted radiation, and matching the plurality of acquired radiographic images, by shifting all or a portion of data of a plurality of the acquired radiographic images such that the corresponding articles within a plurality of the acquired radiographic images are positioned at a same relative position in each of the acquired radiographic images.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to transmit X-rays to an object, an X-ray detector configured to detect the X-rays transmitted through the object and convert the detected X-rays into electrical signals, a gantry in which the X-ray generator and the X-ray detector are installed so as to be opposite to each other, the gantry being rotatable about a bore, a controller configured to control a rotation of the gantry during bio-signal cycles of the object so that the gantry is rotated from different start positions whenever one of the bio-signal cycles is started, and an image processor configured to generate a 4D image of the object by applying a prior image-based compressed sensing image reconstruction algorithm to plural 2D projection images acquired from the electrical signals generated by converting the X-rays detected during the rotation of the gantry.
Abstract:
An X-ray imaging apparatus may include an image acquirer configured to acquire a plurality of X-ray images of an object in different energy bands; and an image processor configured to perform scattering correction on the plurality of X-ray images to remove X-ray scattering from the plurality of X-ray images, perform material separation on the plurality of X-ray images on which the scattering correction has been performed to acquire material information of at least one material included in the object, and repeatedly perform the scattering correction and the material separation depending on whether a predetermined condition is satisfied.
Abstract:
Disclosed herein are an X-ray image apparatus and a control method for the same. The X-ray image apparatus includes an X-ray generator configured to sequentially irradiate an object with a plurality of X-rays of mutually different energy bands, an X-ray detector configured to acquire a plurality of pieces of X-ray data corresponding to the plurality of mutually different energy bands by detecting X-rays transmitted through the object, an image processor configured to convert the acquired plurality of pieces of X-ray data into a plurality of X-ray images and separate blood vessel X-ray images of the object from the plurality of X-ray images, and a controller configured to control operations of the X-ray generator so that the sequentially irradiated plurality of X-rays of the mutually different energy bands are repeatedly irradiated for fixed cycles. The X-ray generator may be configured to sequentially irradiate the object with the plurality of X-rays for a first time interval in the fixed cycles, and the first time interval may be different from a second time interval that is a time interval between a time point at which a final X-ray of a single cycle among the fixed cycles is irradiated and a time point at which a first X-ray of the following cycle among the fixed cycles is irradiated.
Abstract:
Disclosed herein are an X-ray imaging apparatus and a method for the same. The X-ray imaging apparatus includes a kernel function setter configured to set a scatter kernel function in response to a scatter component included in first X-ray image data detected by an X-ray detector, and an image data corrector configured to generate second X-ray image data obtained by performing scatter correction on the first X-ray image data using the scatter kernel function and data consistency. According to the X-ray imaging apparatus and the control method for the same, scatter correction is performed by using data consistency so that accuracy of the scatter correction may be increased and an X-ray image may be generated based on the accuracy, thereby improving quality of the X-ray image.
Abstract:
Disclosed herein is an X-ray imaging apparatus including: an X-ray generator including a first X-ray source configured to irradiate a first X-ray onto an object, and at least one second X-ray source spaced apart from the first X-ray source and configured to irradiate at least one second X-ray onto the object; an X-ray detector configured to detect the first X-ray which has propagated through the object and the at least one second X-ray which has propagated through the object; and an image processor configured to produce a first X-ray image of the object based on the detected first X-ray, to produce at least one second X-ray image of the object based on the detected at least one second X-ray, and to produce a stereoscopic image of the object based on the first X-ray image and the at least one second X-ray image.
Abstract:
An imaging method includes calculating a derivative back projection (DBP) result value using a DBP method with respect to a projection image of a field of view (FOV) inside an object, and reconstructing an image of the FOV by applying a regulation function to the FOV while reconstructing the image of the FOV using the DBP result value.
Abstract:
Disclosed herein are an X-ray imaging apparatus and a control method for the same. The control method for the X-ray imaging apparatus includes acquiring a mask image by irradiating an object with X-rays, determining a movement of the object based on the mask image, generating a plurality of X-ray images of mutually different energy bands when the movement of the object is detected, and generating a single X-ray image of a single energy band when the movement of the object is not detected, and acquiring a blood vessel X-ray image based on the generated X-ray image.
Abstract:
Disclosed is an X-ray imaging apparatus, which includes a plurality of X-ray generation modules configured to emit X-rays to a subject, the X-ray generation modules being configured to move independently of one another, an X-ray detector configured to detect a plurality of X-rays emitted from the plurality of X-ray generation modules and which have passed through the subject, and an image processor configured to acquire a plurality of X-ray images from the plurality of detected X-rays.
Abstract:
Disclosed herein are an X-ray detection panel, an X-ray image generating module, an X-ray imaging apparatus, and a method of generating an X-ray image. The X-ray imaging apparatus includes an X-ray generator configured to emit X-rays; an X-ray detection panel comprising a plurality of pixel groups, each pixel group configured to detect X-rays having an energy band and to convert the detected X-rays into electrical signals; and an image processor configured to acquire readout data from the electrical signals of at least one of the plurality of pixel groups, to calculate estimated data, and to generate an X-ray image by combining the readout data and the estimated data.