Abstract:
Disclosed herein are an ultrasonic imaging apparatus for enhancing target therapy, and a control method thereof. The ultrasonic imaging apparatus includes: an inputter configured to receive a command for setting, in a first ultrasound image, a target area of an object to which target therapy is to be applied, the first ultrasound image showing a lesion to which ultrasound contrast agents including therapeutic agents have been bound within the object; and an image processor configured to compare the first ultrasound image to a second ultrasound image acquired after ultrasonic waves have been irradiated to a target part corresponding to the target area, and to detect at least one of an area into which the therapeutic agents have been delivered and an amount of the therapeutic agents delivered into the area.
Abstract:
Disclosed herein are an image processor, an ultrasonic imaging device, and an image processing method. The image processor includes a signal input unit configured to receive an input signal on a channel, a weighting coefficient database configured to store a weighting coefficient wherein the weighting coefficient is part of a weighting coefficient subgroup, and a processor configured to select the weighting coefficient subgroup from the weighting coefficient database, and convert the input signal by selecting and using the weighting coefficient from the weighting coefficient subgroup.
Abstract:
A medical image processing apparatus includes a weight applier configured to, when a difference between a first imaginary component of a first frame image and a second imaginary component of a second frame image, the second frame image being adjacent to the first frame image, is less than or equal to a first threshold value, apply a first weight to the second imaginary component to increase the difference; and an image generator configured to generate a movement-amplified image based on the first frame image and the second frame image to which the first weight is applied so that a movement of interest corresponding to the increased difference is amplified.
Abstract:
An image processing unit includes an input unit configured to receive image data of at least one image, a plurality of filters configured to filter the image data to generate a plurality of filtered images, and an image generator configured to compare the plurality of filtered images in a comparison to select at least one pixel from the plurality of filtered images according to results of the comparison.
Abstract:
A beamforming module includes a conversion unit configured to convert an input signal to generate a converted signal using at least one conversion function, a weight calculator configured to calculate a converted signal weight as a weight for the converted signal, and a synthesizer configured to generate a result signal using the converted signal and the converted signal weight.
Abstract:
An ultrasound imaging apparatus and a method of controlling the same are provided. The ultrasound imaging apparatus includes an ultrasound contrast agent (UCA) sensor configured to determine whether an UCA flows in an object based on an echo signal that is reflected by the object in a mechanical index environment. The ultrasound imaging apparatus further includes a controller configured to obtain at least one among an UCA image and a tissue image of the object in another mechanical index environment lower than the mechanical index environment in response to the UCA sensor determining that the UCA flows in the object.
Abstract:
An ultrasound based measurement method includes obtaining an element of synthetic data corresponding to a focusing point in a region adjacent to a reflector by applying a synthetic focusing method to received data corresponding to an actual focusing point; and generating an image of the reflector based on the element of the synthetic data.
Abstract:
Disclosed herein is an ultrasonic imaging apparatus including: an ultrasonic probe configured to receive ultrasonic waves reflected from an object, and to convert the ultrasonic waves into electrical signals; a beamformer configured to perform beamforming on the electrical signals to thereby generate resultant signals, and to output the resultant signals; an image restorer configured to estimate a first Point Spread Function (PSF) based on an ultrasound image corresponding to the outputted signals, to determine a situational variable of the ultrasound image using the first PSF, to estimate a second PSF based on the situational variable of the ultrasound image, and to generate a restored image for the ultrasound image using the second PSF; and an image filter configured to filter the restored image based on the situational variable of the ultrasound image, and to output the filtered image.
Abstract:
An image processing module includes an input unit, a weight operator, and a synthesizer. The input unit is configured to receive a plurality of input signals of a plurality of channels. The weight operator is configured to calculate at least one weight to be applied to each channel based on at least one converted signal. The at least one converted signal is acquired by converting at least one input signal among the plurality of input signals of each channel, or by converting a synthesized input signal of the plurality of input signals of each channel. The synthesizer is configured to synthesize the plurality of input signals of the plurality of channels using the weight.
Abstract:
An ultrasonic imaging method includes emitting ultrasonic pulses in different directions and acquiring ultrasonic echo signals from an object, calculating an attenuation rate of the ultrasonic echo signals, correcting the acquired ultrasonic echo signals based on the attenuation rate, and outputting the corrected ultrasonic echo signals as an ultrasonic image.