Abstract:
Disclosed is a frequency detector. The frequency detector includes a first flip-flop sampling a clock signal based on a data signal to generate a first signal, a second flip-flop sampling a delayed-phase component of the clock signal based on the data signal or sampling the clock signal based on a delayed-phase component of the data signal to generate a second signal, a third flip-flop generating a third signal representing a polarity of a frequency difference between a data rate of the data signal and a frequency of the clock signal based on the first signal and the second signal, and a delay cell generating the delayed-phase component of the clock signal or the delayed-phase component of the data signal. The delayed-phase component has a delay amount set to a value smaller than about 0.25 UI.
Abstract:
A self-bias signal generating circuit includes a differential amplifier circuit including a current source transistor. The differential amplifier circuit is configured to amplify at least a pair of differential input signals to generate at least a pair of differential output signals, and the differential amplifier circuit is configured to generate an output common-mode signal based on the at least a pair of differential output signals. The self-bias signal generating circuit includes a feedback loop circuit configured to adjust a voltage level of the output common-mode signal to generate a self-bias signal, and the feedback loop circuit is configured to provide the self-bias signal to the differential amplifier circuit. The self-bias signal is applied to a gate terminal of the current source transistor.
Abstract:
A method, and a mobile device adapted thereto, verifies a user and executes applications via handwriting recognition. The method of controlling a mobile device includes entering a lock state, detecting a user's input, verifying a user based on the input and searching for an instruction corresponding to the input, and performing at least one of maintaining or releasing the lock state and which performs an operation corresponding to the instruction, based on user verification result and the instruction search result.
Abstract:
A system-on-chip according to an embodiment includes a core including a header switch circuit configured to transmit a power supply voltage applied to a first power rail as a supply voltage to a second power rail and a logic circuit configured to operate based on the supply voltage from the second power rail, and a low-dropout (LDO) regulator configured to regulate a magnitude of first current output to the second power rail based on a change in the supply voltage, wherein the LDO regulator is further configured to control on/off of a plurality of first header switches included in the header switch circuit based on an amount of the change in the supply voltage.
Abstract:
A method, and a mobile device adapted thereto, verifies a user and executes applications via handwriting recognition. The method of controlling a mobile device includes entering a lock state, detecting a user's input, verifying a user based on the input and searching for an instruction corresponding to the input, and performing at least one of maintaining or releasing the lock state and which performs an operation corresponding to the instruction, based on user verification result and the instruction search result.
Abstract:
A method, and a mobile device adapted thereto, verifies a user and executes applications via handwriting recognition. The method of controlling a mobile device includes entering a lock state, detecting a user's input, verifying a user based on the input and searching for an instruction corresponding to the input, and performing at least one of maintaining or releasing the lock state and which performs an operation corresponding to the instruction, based on user verification result and the instruction search result.