Abstract:
Disclosed is a ridge guide waveguide including a conductive base, a conductive ridge protruding upward from the conductive base and extending along a predetermined wave transmission direction, an upper conductive wall located over the conductive base and the conductive ridge and spaced apart from the conductive ridge by a gap, and an electromagnetic bandgap structure arranged adjacent to the conductive ridge between the conductive base and the upper conductive wall.
Abstract:
Disclosed is an apparatus and method for wirelessly transmitting power to power receivers from a power transmitter. The present disclosure provides a rational search procedure for locations of the power receivers, and provides a function of simultaneously charging multiple receivers using microwave multi-focusing. The wireless power transmission method performed by a power transmitter includes determining angular coordinates of the power transmitter in relation to a position of at least one power receiver; determining a distance between the at least one power receiver and the power transmitter based on the determined angular coordinates by using a focused microwave field; determining a location of the at least one power receiver based on the determined angular coordinates and the distance; and wirelessly transmitting power by focusing the microwave field to the determined location of the at least one power receiver.
Abstract:
The present disclosure relates to radio engineering, and more specifically to high-frequency (HF) signal transmission/reception devices based on photoconductive switching elements. An HF signal transmission/reception device comprises a signal electrode with matching elements disposed along an edge thereof; a ground electrode, a dielectric layer between the signal electrode and the ground electrode, photoconductive elements (PE) each electrically connected to the signal electrode and the ground electrode and arranged in a grid, an excitation signal feed point, and load elements electrically connected to the matching elements. The photoconductive elements each have a switched-off state in the absence of a control light flux and a switched-on state in the presence of a control light flux, The switched-on photoconductive elements form a reflection profile of the signal supplied from the excitation signal feed point. The distance between adjacent photoconductive elements is less than half the wavelength of the excitation signal.
Abstract:
Provided is a self-resonant apparatus in relation to electric and radio technologies, and more particularly, to a wireless power transmission system, the self-resonant apparatus including ring resonators. Here, the ring resonators may be represented by a combination having metamaterial features, the combination may include split-ring resonators (SRRs) connected in parallel to capacitors, a front surface and a rear surface of each of the SRRs may be connected to be twisted in an alternating pattern, and each SRR may be executed as a metal strip mounted on a dielectric layer and connected to a neighboring SRR by a series capacitor.
Abstract:
A first terminal according to an embodiment of the disclosure may obtain information regarding reception power of a reference signal transmitted to a second terminal, obtain information regarding reception power of a source signal transmitted to the second terminal, obtain information regarding reception power of a first combined signal that is transmitted to the second terminal and is a combination of the reference signal and the source signal, obtain information regarding reception power of a second combined signal that is transmitted to the second terminal and is a combination of a modified source signal obtained by shifting a phase of the source signal and the reference signal, and determine a transmission beam of the first terminal, based on the information regarding the reception power of each of the reference signal, the source signal, the first combined signal and the second combined signal.
Abstract:
A device for controlling transmission of electromagnetic waves according to the present disclosure includes: a conductor line which is positioned on a signal layer and through which electromagnetic waves received via an input terminal travel; a ground layer electrically separated from the signal layer through a dielectric layer and electrically grounded; a shunt via including a first end and a second end and connected to the conductor line through the first end; and a photoconductive semiconductor connected between the second end of the shunt via and the ground layer and having a dielectric state or a conducting state, based on an input of an optical signal, wherein the conductor line is electrically connected to the ground layer via the shunt via and the photoconductive semiconductor in the conducting state, thereby causing reflection of electromagnetic waves from the shunt via.
Abstract:
Disclosed is an apparatus and method for wirelessly transmitting power to power receivers from a power transmitter. The present disclosure provides a rational search procedure for locations of the power receivers, and provides a function of simultaneously charging multiple receivers using microwave multi-focusing. The wireless power transmission method performed by a power transmitter includes determining angular coordinates of the power transmitter in relation to a position of at least one power receiver; determining a distance between the at least one power receiver and the power transmitter based on the determined angular coordinates by using a focused microwave field; determining a location of the at least one power receiver based on the determined angular coordinates and the distance; and wirelessly transmitting power by focusing the microwave field to the determined location of the at least one power receiver.
Abstract:
The present disclosure relates to an analog phase shifter for mitigating transmission losses. The analog phase shifter includes a multi-port network including an input port for inputting an RF signal and an output port for outputting a phase-changed RF signal. The analog phase shifter further includes a hybrid coupler configured to operably couple the input port and the output port to a plurality of load ports. The analog phase shifter additionally includes tunable reflective loads coupled to the hybrid coupler through the plurality of load ports. Load values of the tunable reflective loads are tuned by applying a plurality of independent voltages.
Abstract:
A magnetic field generation apparatus includes a plurality of coplanar inductors disposed to form a planar structure, wherein each of the coplanar inductors is configured to generate a magnetic field having a basis vector that is orthogonal to a basis vector of a magnetic field generated by another one of the coplanar inductors.
Abstract:
Disclosed is an apparatus and method for wirelessly transmitting power to power receivers from a power transmitter. The present disclosure provides a rational search procedure for locations of the power receivers, and provides a function of simultaneously charging multiple receivers using microwave multi-focusing. The wireless power transmission method performed by a power transmitter includes determining angular coordinates of the power transmitter in relation to a position of at least one power receiver; determining a distance between the at least one power receiver and the power transmitter based on the determined angular coordinates by using a focused microwave field; determining a location of the at least one power receiver based on the determined angular coordinates and the distance; and wirelessly transmitting power by focusing the microwave field to the determined location of the at least one power receiver.