Abstract:
An electronic device includes a power management circuit which supplies power from a battery to electronic components, a battery management circuit which controls connection between the battery and the power management circuit, a physical key formed on a part of the electronic device, a key control circuit which controls connection between the physical key and the battery management circuit, and a processor connected to the power management circuit. The processor is configured to transmit a signal for powering off the electronic device to the power management circuit, and when the electronic device is powered off, to control the key control circuit to connect the physical key with the battery management circuit. The power management circuit is configured to, when receiving the signal for powering off the electronic device, control the battery management circuit to disconnect the battery from the one or more electronic components included in the electronic device.
Abstract:
An electrode material may include a porous carbon material and an organic clay. An electrode for a capacitive deionization apparatus may include the electrode material. A method of removing ions from a fluid may include using the capacitive deionization apparatus.
Abstract:
A capacitive deionization apparatus may include at least one pair of porous electrodes and a spacer structure disposed between the at least one pair of electrodes. The at least one pair of porous electrodes may include an electrode material having a surface area for the electrostatic adsorption of feed ions. The spacer structure may include an electrically-insulating material with an ion exchange group on the surface thereof. The spacer structure provides a path for flowing a fluid therethrough.
Abstract:
Disclosed is an electronic device which can control battery charging on the basis of the state of a battery. The electronic device of the present disclosure can check the voltage of a battery and the output voltage of a charging circuit, while the battery is being charged in a constant current state, and determine the state of the battery on the basis of at least the voltage of the battery and the output voltage of the charging circuit. Other various embodiments identified in the description are possible.