Abstract:
An electronic pen includes a signal generator, a power supply, and a resonance circuit. The signal generator is configured to generate a signal. The power supply is configured to supply power to the signal generator. The resonance circuit is configured to generate a current based on the signal and emit a magnetic field based on the current.
Abstract:
A display device includes a first base layer, a circuit layer disposed on the first base layer and including a plurality of switching elements, a pixel layer disposed on the circuit layer and including a light emitting element, wherein the light emitting element is configured to receive a current from at least one of the plurality of switching elements to emit a first light, and a sensor layer disposed below the first base layer and including a sensor, wherein the sensor is configured to receive a second light generated when the first light is reflected by an external object.
Abstract:
A window covers a display panel including a display area for displaying an image and a non-display area neighboring the display area by a resin. The window includes a window main body including a transmitting area corresponding to the display area and a blocking area neighboring the transmitting area and corresponding to the non-display area; a light blocking layer provided on the window main body corresponding to the blocking area; and a contamination preventing layer provided on a region of the window main body located near or at a border line between the transmitting area and the blocking area. The contamination preventing layer contacts the resin.
Abstract:
A display device includes: a display panel; an input sensor on the display panel; a panel driving circuit to drive the display panel, and to output a synchronization signal; and a sensor controller to control the input sensor. The sensor controller determines a sensing mode in response to the synchronization signal, and changes the sensing mode to a second sensing mode when the synchronization signal is activated in a first sensing mode.
Abstract:
A display device includes a display panel and an input sensor. The input sensor includes a first electrode and a second electrode crossing each other and a bridge pattern at a crossing area of the first electrode and the second electrode. One of the first electrode and the second electrode includes a plurality of center patterns each having a first opening, a plurality of first patterns at one side of the plurality of center patterns and each having a second opening, a plurality of second patterns at another side of the plurality of center patterns and each having a third opening, and a plurality of third patterns for electrically connecting two adjacent patterns from among the plurality of center patterns, the plurality of first patterns, and the plurality of second patterns.
Abstract:
An electronic device includes: a display layer; a display driver configured to generate a horizontal synchronization signal and a vertical synchronization signal for driving the display layer; a sensor layer on the display layer; and a sensor driver configured to receive the horizontal synchronization signal and the vertical synchronization signal from the display driver, and to operate, based on the horizontal synchronization signal and the vertical synchronization signal, in a first mode in which a first input generated by an active pen is detected or a second mode in which a second input generated by a touch is detected.
Abstract:
An electronic device including a display layer and a sensor layer including a plurality of sensing units. Each of the plurality of sensing units includes at least one sub sensing unit. The at least one sub sensing unit includes a first pattern including a first portion and a second portion, a first cross pattern including a first cross portion and a second cross portion, a second cross pattern, and a bridge pattern. The second portion extends in a first cross direction crossing the first direction and a second direction crossing the first direction to face the first cross portion, and the second cross portion extends in the first cross direction to face the first portion.
Abstract:
A display device includes a display panel, an input sensor, and a readout circuit. The display panel is configured to display an image. The input sensor is disposed on the display panel, and includes transmission electrodes and reception electrodes electrically insulated from the transmission electrodes. The readout circuit is connected to the input sensor, and includes a first transmission/reception circuit, a second transmission/reception circuit, and a control circuit. The first transmission/reception circuit is electrically connected to the reception electrodes. The second transmission/reception circuit electrically is connected to the transmission electrodes. The control circuit configured to transmit a transmission signal to the input sensor through one of the first transmission/reception circuit and the second transmission/reception circuit, and to receive a reception signal from the input sensor through the other of the first transmission/reception circuit and the second transmission/reception circuit.
Abstract:
A scan driving device includes shift registers, each including a first signal terminal to which a forward direction driving start signal is transferred, a second signal terminal to which a backward direction driving start signal is transferred, a clock signal terminal and a clock bar signal terminal to which a clock signal and a clock bar signal are applied, a sustain signal terminal to which a sustain signal is transferred, a control signal terminal to which a control signal is transferred, a gate clock signal terminal to which a gate clock signal is transferred, and an output signal terminal, where driving power source voltages including a high potential power source voltage and low potential power source voltages is applied to each shift register, and an application of the low potential power source voltages to each shift register is controlled based on the sustain signal.
Abstract:
A window covers a display panel including a display area for displaying an image and a non-display area neighboring the display area by a resin. The window includes a window main body including a transmitting area corresponding to the display area and a blocking area neighboring the transmitting area and corresponding to the non-display area; a light blocking layer provided on the window main body corresponding to the blocking area; and a contamination preventing layer provided on a region of the window main body located near or at a border line between the transmitting area and the blocking area. The contamination preventing layer contacts the resin.