Abstract:
A display device includes: a plurality of pixel blocks each including a plurality of pixels; a scan driver supplying a scan signal to the scan lines and to supply a control signal to the control lines; a data driver supplying an image data voltage or a low grayscale data voltage to the data lines; and a power supply supplying a reference voltage to the pixels, wherein the pixels are configured to receive the image data voltage during a first scan period of a frame, and to receive the low grayscale data voltage during a second scan period of the frame, and the reference voltage supplied to a first pixel row of at least one of the pixel blocks in the first scan period is different from the reference voltage supplied to a last pixel row of at least one of the pixel blocks in the first scan period.
Abstract:
A display device, includes: a scan driver configured to sequentially supply scan signals having a turn-on level to the first scan line and the second scan line during a first period and to concurrently supply scan signals having a turn-on level to the first scan line and the second scan line during a second period after the first period, wherein: a mask period corresponds to a difference between a start point of the second period and a start point of the first period in a next frame period, a first frame period and a second frame period have different mask periods, a third frame period between the first frame period and the second frame period has a same mask period as the first frame period, and a fourth frame period between the first frame period and the second frame period has a same mask period as the second frame period.
Abstract:
A display device includes: a plurality of pixel blocks each including a plurality of pixels; a scan driver supplying a scan signal to the scan lines and to supply a control signal to the control lines; a data driver supplying an image data voltage or a low grayscale data voltage to the data lines; and a power supply supplying a reference voltage to the pixels, wherein the pixels are configured to receive the image data voltage during a first scan period of a frame, and to receive the low grayscale data voltage during a second scan period of the frame, and the reference voltage supplied to a first pixel row of at least one of the pixel blocks in the first scan period is different from the reference voltage supplied to a last pixel row of at least one of the pixel blocks in the first scan period.
Abstract:
A display device and a method of driving the same are described. The display device includes: an over driver to overdrive current frame data included in input image data to output overdriving frame data; a data driver to generate a data signal for the current frame data based on the overdriving frame data; and a display panel including a plurality of pixels to receive the data signal, the over driver may calculate a temporal change rate or a spatial change rate of the input image data, and output the overdriving frame data utilizing a reference formula having a first main parameter determined according to the calculated result. Therefore, overdriving may be performed dynamically according to the spatial change rate or the temporal change rate of the input image data.
Abstract:
A display device, includes: a scan driver configured to sequentially supply scan signals having a turn-on level to the first scan line and the second scan line during a first period and to concurrently supply scan signals having a turn-on level to the first scan line and the second scan line during a second period after the first period, wherein: a mask period corresponds to a difference between a start point of the second period and a start point of the first period in a next frame period, a first frame period and a second frame period have different mask periods, a third frame period between the first frame period and the second frame period has a same mask period as the first frame period, and a fourth frame period between the first frame period and the second frame period has a same mask period as the second frame period.
Abstract:
A display device includes a scan driver which includes a first stage including a first output terminal connected to a first carry line, a second output terminal connected to a first scan line, and a third output terminal connected to a first sensing line, and a second stage including a first input terminal connected to the first carry line, a fourth output terminal connected to a second scan line, and a fifth output terminal connected to a second sensing line. In a sensing period, signals having a turn-on level are respectively output from the first output terminal, the second output terminal, and the third output terminal during a predetermined delay period before signals having a turn-on level are respectively output from the fourth output terminal and the fifth output terminal.
Abstract:
A compensation method of a display device includes: sensing a first luminance of the display device when a first pattern is displayed on the display device; calculating a luminance prediction value corresponding to a second pattern to be displayed on the display device based on the first luminance, where the second pattern is different from the first pattern; sensing a second luminance of the display device when the second pattern is displayed on the display device; adjusting a current flowing in a first power line of the display device until the second luminance reaches the luminance prediction value; and storing compensation data corresponding to an adjusted current in a lookup table when the second luminance reaches the luminance prediction value.
Abstract:
A display device includes a display panel. The display panel includes a display panel including a data line, a sensing line, and pixels coupled to the data line and the sensing line. A timing controller generates clock embedded data including image data and a clock training signal. A data driver recovers a clock signal, based on the clock training signal of the clock embedded data, recovers the image data of the clock embedded data, based on the clock signal, supplies a data voltage corresponding to the image data to the data line in a first section, and receives a sensing signal from a pixel of the pixels through the sensing line in a second section different from the first section. In the second section, the data driver recovers the clock signal while the sensing signal is being received.
Abstract:
A display device includes an external image processing set and a display assembly configured to receive converted image data from the external image processing set and display an image corresponding to the converted image data. The display assembly includes a dynamic capacitance compensation lookup table storage unit which stores therein a dynamic capacitance compensation lookup table, and the external image processing set includes a memory which receives the dynamic capacitance compensation lookup table from the display assembly and stores therein the received dynamic capacitance compensation lookup table, and a graphic processing unit which outputs converted image data in which current frame data has undergone dynamic capacitance compensation based on the stored dynamic capacitance compensation lookup table, the current frame data and previous frame data.