Abstract:
A display panel includes a gate line, first and second data lines, first and second gate control lines, and first and second pixels. The first pixel includes a double-gate switching element including a gate electrode connected to the gate line, a source electrode connected to the first data line, and another gate electrode connected to the first gate control line. The second pixel includes a double-gate switching element including a gate electrode connected to the gate line, a source electrode connected to the second data line, and a gate electrode connected to the second gate control line. A data voltage having a first polarity is applied to the first data line, another data voltage having a second polarity is applied to the second data line, and first and second gate control voltages are respectively applied to the first and second gate control lines.
Abstract:
A display device includes pixels configured to emit light of various intensity in accordance with driving signals, data lines, scan lines, and a power supply unit configured to supply at least one driving voltage to the pixels. At least one of the pixels may comprise a switching transistor having a first electrode connected to one of the data lines and a second electrode connected to a first node, and a gate electrode connected to one of the scan lines, a driving transistor connected between the power supply unit and an organic light emitting diode, a storage capacitor having a first terminal connected to the first node and a second terminal connected to a gate electrode of the driving transistor, and a first transistor connected between the first node and a first electrode of the driving transistor.
Abstract:
An image processing part includes an edge enhancing part, an artifact detecting part and a compensating part. The edge enhancing part emphasizes an edge portion of an object in input image data. The artifact detecting part detects a corner outlier artifact at an area adjacent to the edge portion of the object. The compensating part compensates the corner outlier artifact. Accordingly, the edge portion of the object may be enhanced and the corner outlier artifact is decreased so that the display quality may be improved.
Abstract:
An image processing part includes an edge enhancing part, an artifact detecting part and a compensating part. The edge enhancing part emphasizes an edge portion of an object in input image data. The artifact detecting part detects a corner outlier artifact at an area adjacent to the edge portion of the object. The compensating part compensates the corner outlier artifact. Accordingly, the edge portion of the object may be enhanced and the corner outlier artifact is decreased so that the display quality may be improved.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
A display substrate includes a base substrate, a gate line portion, a data line portion, and a pixel portion. The base substrate includes a display area divided into first to fourth divided display areas, and first to fourth peripheral areas. The gate line portion includes a plurality of first gate lines, and a plurality of second gate lines. The data line portion includes a plurality of first data lines, and a plurality of second data lines. The pixel portion is disposed in the display area to be electrically connected to the first and second gate lines and the first and second data lines, respectively.
Abstract:
A liquid crystal display panel, including a unit pixel including a first substrate having a first alignment film, a second substrate having a second alignment film spaced apart from and facing the first alignment film, and a liquid crystal layer interposed between the first alignment film and the second alignment film; and first and second adjacent domains, each of which includes a domain boundary region defining part of an area between the adjacent domains, and a normal-luminance region adjacent to the domain boundary region, wherein pretilt angles of liquid crystal molecules near the first alignment film in the domain boundary regions are greater than pretilt angles of liquid crystal molecules near the first alignment film in the normal-luminance regions.
Abstract:
A display device includes: pixels to emit light of various intensity in accordance with driving signals; data lines to communicate the driving signals to the pixels; scan lines to communicate scan signals to select at least one of the pixels to receive the driving signals; a first power supply to supply at least one driving voltage to the pixels; and a second power supply including an initial voltage terminal to supply an initial voltage to the pixels. The at least one pixel includes: a driving transistor connected between the first power supply and an anode electrode of an organic light emitting diode, a third transistor including an oxide transistor, the third transistor having a first electrode connected to the initial voltage terminal, a second electrode connected to the anode electrode, and first and second gate electrodes, each of which is connected to one of the scan lines, and a fourth transistor including a poly-silicon transistor, the fourth transistor having a first electrode connected to the first power supply, and a second electrode connected to a second electrode of the driving transistor.
Abstract:
A display device includes: pixels to emit light of various intensity in accordance with driving signals; data lines to communicate the driving signals to the pixels; scan lines to communicate scan signals to select at least one of the pixels to receive the driving signal; and a power supply to supply at least one driving voltage to the pixels. The at least one pixel includes: a switching transistor including an oxide transistor, the switching transistor having a first electrode connected to the data line, a second electrode connected to a first node, and first and second gate electrodes, each of which is connected to one of the scan lines, and a driving transistor including a poly-silicon transistor, and the driving transistor being connected between the power supply and an organic light emitting diode.
Abstract:
An emission control driver includes a plurality of stages configured to output a plurality of emission control signals, respectively. Each stage includes an input circuit for receiving a previous emission control signal from one of previous stages or a vertical start signal, and configured to control a voltage of a first node and a voltage of a second node in response to a first clock signal; a stabilizing circuit for stabilizing the voltage of the first node in response to the voltage of the second node and a second clock signal; a voltage adjusting circuit connected between the second node and a third node, configured for boosting the voltage of the second node, and controlling the boosted voltage of the second node; and an output circuit configured to control an emission control signal in response to the voltage of the first node and a voltage of the third node.