Abstract:
A display device includes a display panel including a light-emitting device to emit light; and an input sensor disposed on the display panel. The input sensor includes a first insulating layer disposed on the display panel; a first conductive layer disposed on the first insulating layer; a second insulating layer covering the first conductive layer; and a second conductive layer disposed on the second insulating layer. At least one of the first and second insulating layers includes a plurality of diffraction patterns arranged to diffract at least a portion of the light provided from the display panel.
Abstract:
A display device includes a display panel including a light-emitting device to emit light; and an input sensor disposed on the display panel. The input sensor includes a first insulating layer disposed on the display panel; a first conductive layer disposed on the first insulating layer; a second insulating layer covering the first conductive layer; and a second conductive layer disposed on the second insulating layer. At least one of the first and second insulating layers includes a plurality of diffraction patterns arranged to diffract at least a portion of the light provided from the display panel.
Abstract:
A display apparatus including a main display area, a component area, and a peripheral area includes: a main sub-pixel including a main display element on a substrate to correspond to the main display area, an auxiliary sub-pixel including an auxiliary display element on the substrate to correspond to the component area, wherein the main display area and the component area have a first boundary portion, a second boundary portion, and a third boundary portion as boundary portions where at least three edges of each of the main display area and the component area are in contact with each other, and a main sub-pixel arranged at an outermost portion of the main display area and an auxiliary sub-pixel arranged at an outermost portion of the component area have a mutually identical arrangement to correspond to each of the first boundary portion, the second boundary portion, and the third boundary portion.
Abstract:
Organic light-emitting diode (OLED) displays and methods of manufacturing OLD displays are disclosed. In one aspect, an OLED display includes a substrate having an emission area and a non-emission area, a pixel electrode formed in the emission area, and an intermediate layer formed over the pixel electrode and including an organic emission layer. The display also includes an opposite electrode formed in the emission and non-emission areas and at least partially covering the intermediate layer. The display further includes a black matrix formed over the opposite electrode and including a first light-blocking portion formed in the non-emission area and a second light-blocking portion formed in the emission area and having light transmittance greater than that of the first light-blocking portion.
Abstract:
Organic light-emitting diode (OLED) displays and methods of manufacturing OLD displays are disclosed. In one aspect, an OLED display includes a substrate having an emission area and a non-emission area, a pixel electrode formed in the emission area, and an intermediate layer formed over the pixel electrode and including an organic emission layer. The display also includes an opposite electrode formed in the emission and non-emission areas and at least partially covering the intermediate layer. The display further includes a black matrix formed over the opposite electrode and including a first light-blocking portion formed in the non-emission area and a second light-blocking portion formed in the emission area and having light transmittance greater than that of the first light-blocking portion.
Abstract:
Organic light-emitting diode (OLED) displays and methods of manufacturing OLD displays are disclosed. In one aspect, an OLED display includes a substrate having an emission area and a non-emission area, a pixel electrode formed in the emission area, and an intermediate layer formed over the pixel electrode and including an organic emission layer. The display also includes an opposite electrode formed in the emission and non-emission areas and at least partially covering the intermediate layer. The display further includes a black matrix formed over the opposite electrode and including a first light-blocking portion formed in the non-emission area and a second light-blocking portion formed in the emission area and having light transmittance greater than that of the first light-blocking portion.
Abstract:
A display panel includes: a display area including a main display area, and a component area; a peripheral area; a plurality of main pixel circuits at the main display area; a plurality of main gate lines extending in a first direction, and connected to the main pixel circuits; a plurality of main data lines extending in a second direction, and connected to the main pixel circuits; a plurality of auxiliary display elements at the component area; a plurality of auxiliary pixel circuits at the periphery area, and connected to the auxiliary display elements; a plurality of auxiliary gate lines connected to the auxiliary pixel circuits, and to main gate lines that are adjacent to the component area in the first direction; and a plurality of auxiliary data lines connected to the auxiliary pixel circuits, and to main data lines that are adjacent to the component area in the second direction.
Abstract:
A display apparatus includes a pixel circuit layer including at least one thin-film transistor, a planarization layer located on the at least one thin-film transistor, and a first bank layer located on the planarization layer and defining a first opening, a display element including a pixel electrode located to correspond to the first opening, a counter electrode, and an emission layer located between the pixel electrode and the counter electrode, a second bank layer located between the pixel electrode and the counter electrode defining a pixel opening, and a light-blocking layer located on the display element and defining a second opening, wherein the pixel electrode includes an inclined surface located on a side surface of the first bank layer and a flat surface located on a top surface of the planarization layer exposed through the first opening, wherein the inclined surface of the pixel electrode is inclined by 15° to 25°.
Abstract:
A display panel includes: a display area including a main display area, and a component area; a peripheral area; a plurality of main pixel circuits at the main display area; a plurality of main gate lines extending in a first direction, and connected to the main pixel circuits; a plurality of main data lines extending in a second direction, and connected to the main pixel circuits; a plurality of auxiliary display elements at the component area; a plurality of auxiliary pixel circuits at the periphery area, and connected to the auxiliary display elements; a plurality of auxiliary gate lines connected to the auxiliary pixel circuits, and to main gate lines that are adjacent to the component area in the first direction; and a plurality of auxiliary data lines connected to the auxiliary pixel circuits, and to main data lines that are adjacent to the component area in the second direction.
Abstract:
A display apparatus includes: a plurality of first display elements at a first display area; a plurality of first pixel circuits at the first display area, and electrically connected to the plurality of first display elements, respectively; a plurality of second display elements at a second display area; a plurality of second pixel circuits located along a first direction at a non-display area, and electrically connected to the plurality of second display elements, respectively; and a data line electrically connected to at least one first pixel circuit from among the plurality of first pixel circuits that is located along a second direction crossing the first direction at the first display area, and to at least one second pixel circuit from among the plurality of second pixel circuits. The plurality of second pixel circuits are spaced from the plurality of second display elements in a plan view.