Abstract:
A method of making a touch screen panel includes providing a substrate assembly and a multi-layered film. The substrate assembly inclues a substrate, and first and second sensing electrodes formed over the substrate. The multi-layered film includes a first conductive photosensitive layer, a second conductive photosensitive layer, and an insulation photosensitive layer. The insulation photosensitive layer has a light sensitivity different from that of at least one of the first and second conductive photosensitive layers. The method further includes forming insulators by exposing and developing the insulation photosensitive layer, and forming bridges and insulators by exposing and developing the second conductive photosensitive layer. The substrate assembly and the multi-layered film are assembled to form the touch panel.
Abstract:
A flexible touch screen panel includes a flexible substrate; a plurality of first sensing cells on a surface of the substrate and arranged along a first direction, and a plurality of second sensing cells on the surface of the substrate and arranged along a second direction crossing the first direction; and a plurality of first coupling patterns configured to couple adjacent ones of the first sensing cells along the first direction, and a plurality of second coupling patterns configured to couple adjacent ones of the second sensing cells along the second direction, wherein the first and second sensing cells form meshes having a plurality of apertures, and the first coupling patterns have a lamination structure including different materials.
Abstract:
There is provided a method for forming a graphene pattern, in which a graphene thin film layer is transferred onto a surface of a photosensitive film, and then patterned through exposure/development of the photosensitive film. The photosensitive film is cured after being finally developed, thereby securing stability and reliability.
Abstract:
A flexible touch screen panel includes a flexible substrate; a plurality of first sensing cells on a surface of the substrate and arranged along a first direction, and a plurality of second sensing cells on the surface of the substrate and arranged along a second direction crossing the first direction; and a plurality of first coupling patterns configured to couple adjacent ones of the first sensing cells along the first direction, and a plurality of second coupling patterns configured to couple adjacent ones of the second sensing cells along the second direction, wherein the first and second sensing cells form meshes having a plurality of apertures, and the first coupling patterns have a lamination structure including different materials.
Abstract:
A flexible touch screen panel includes a substrate, sensing patterns, sensing lines, and at least one bending sensor. The substrate is divided into an active area and a non-active area around the active area. The sensing patterns are on the active area of a first surface of the substrate. The sensing lines are on the non-active area of the first surface of the substrate and connected to the sensing patterns. The at least one bending sensor is implemented with a plurality of sensing patterns at an edge region in the active area. In the flexible touch screen panel, the substrate is configured to be bent along a folding axis in a first direction, and the at least one bending sensor is at a region along the folding axis.