Abstract:
A curved display device includes a display panel having a curved shape and including a display area having a curved surface, and a backlight assembly providing a light to the display panel. The backlight assembly includes at least one light source arranged to emit the light and a light guiding member positioned and arranged to guide the light to the display panel. The light guiding member includes at least two light guiding parts spaced apart from each other with a gap therebetween, the light source being disposed in the gap.
Abstract:
A light-transmissive adhesive film includes an adhesive layer in which an elastic modulus in a second area is higher than that in a first area, and also includes release layers on upper and lower portions of the adhesive layer.
Abstract:
A display device includes a display panel including a plurality of pixels that each include an organic light emitting diode and a driving element, the display panel being configured to display an image data on the pixels; a data driver configured to generate a data voltage corresponding to the image data; a compensation circuit configured to sense a driving current flowing through the pixels and to generate a compensation data voltage that compensates for a threshold voltage of the driving element based on the data voltage and the driving current; a scan driver configured to generate a first scan signal and a second scan signal provided to the pixels; and a timing controller configured to generate control signals that control the data driver and the scan driver.
Abstract:
A light guide plate includes a light conversion portion which transmits a transmission incident light having a first wavelength, and converts a conversion incident light having the first wavelength to a converted light having a second wavelength; and a light guide portion which guides the transmission incident light and the converted light in a first direction. The light conversion portion includes a light incident surface which receives the transmission incident light and the conversion incident light, an inclined side surface inclined with respect to the light incident surface to form an inclined angle with the light incident surface, quantum dots which convert light having the first wavelength to light having the second wavelength and are distributed in a quantum area on the light incident surface and the inclined side surface, and a reflector adjacent to the inclined side surface in a second direction opposite to the first direction.
Abstract:
A display apparatus with at least two light guide plates, each including a light incident surface and a light exiting surface, the light guide plates being spaced apart from each other so as to form a gap therebetween. The display apparatus also has a light source disposed adjacent to at least one side portion of the light guide plates to emit light to the light incident surface, a display panel positioned to receive light from the light exiting surfaces to facilitate display of an image, and a diffusion member. The diffusion member covers the gap, so as to diffuse light directed toward the display panel.
Abstract:
Provided are a stretchable display apparatus including a display area and a non-display area NDA outside the display area and a method of manufacturing the stretchable display apparatus, wherein the stretchable display apparatus includes a plurality of island portions arranged in the display area and disposed to be spaced apart from one another, a plurality of bridge portions each connecting island portions adjacent to each other among the plurality of island portions, and a plurality of wirings arranged in the plurality of bridge portions, and each of the wirings includes a first layer including an alloy of aluminum and a rare-earth element.
Abstract:
A display device includes a display panel including a first pad on a base substrate, an adhesive pattern which faces the base substrate with the first pad therebetween, a circuit board electrically connected to the display panel at the first pad and including a second pad facing the first pad, and a plurality of conductive members between the first pad and the second pad to electrically connect the first pad and the second pad to each other. The first pad of the display panel has a planar shape, and each of the plurality of conductive members is within the planar shape of the first pad and penetrates the adhesive pattern to contact the first pad.
Abstract:
A display apparatus includes a plurality of pixels disposed in an active area, a plurality of non-pixels disposed in a non-active area adjacent to the active area, and a plurality of light guide members disposed on boundary pixels of the pixels in the active area and which extends into the non-active area and is disposed on the non-pixels in the non-active area. The boundary pixels are adjacent to a boundary between the active area and the non-active area, and the light guide members guide light exiting from the boundary pixels to the non-pixels.
Abstract:
A display device includes a backlight unit and a display panel disposed on the backlight unit. The backlight unit includes a light guide plate including a plurality of charged particles, a light source unit disposed at a side of the light guide plate and providing light to the light guide plate, and a transparent electrode disposed under the light guide plate. Each of the plurality of charged particles includes first and second charged portions which have charge values of which polarities are different from each other. The first charged portion reflects the light received from the light source unit, and the second charged portion absorbs the light received from the light source unit. Positions of the first and second charged portions of each of the plurality of charged particles are controlled based on a voltage applied to the transparent electrode.
Abstract:
A display device includes a backlight unit and a display panel disposed on the backlight unit. The backlight unit includes a light source unit and an optical unit disposed between the light source unit and the display panel. The optical unit includes an alignment layer, quantum rods disposed on the alignment layer, and an accommodation part configured to accommodate the alignment layer and the quantum rods.