Abstract:
A display panel of an organic light emitting diode (OLED) display device having a display region includes a plurality of first pixels located at an upper half of the display region, a plurality of second pixels located at a lower half of the display region, a plurality of first data lines extending in a first direction, and coupled to the plurality of first pixels, a plurality of second data lines extending in the first direction, disposed alternately with the plurality of first data lines along a second direction crossing the first direction, and coupled to the plurality of second pixels, and a demultiplexing circuit configured to selectively couple a plurality of data channels of a data driver of the OLED display device to the plurality of first data lines or the plurality of second data lines.
Abstract:
A flexible display device according to example embodiments includes a rollable display panel, a housing accommodating the rollable display panel in a rolled state and including an opening portion through which the rollable display panel is pulled out, an optical sensor disposed at the opening portion and configured to detect luminance of the rollable display panel while the rollable display panel is rolled or unrolled, a controller configured to compensate image data based on detection data generated by the optical sensor, and a display panel driver configured to control a display of rollable display panel.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a power supply. The display panel includes power voltage lines and pixels coupled to data lines and scan lines. The data driver supplies data voltages to the data lines. The scan driver provides scan signals to the scan lines. The power supply supplies a power voltage to the power voltage lines. The display panel includes a compensation resistance coupled between s pixels and one of the power voltage lines.
Abstract:
A pixel includes a driving circuit, a first organic light emitting diode, a second organic light emitting diode, and a self-repair circuit. The driving circuit supplies current based on a data signal supplied through a data line. The first organic light emitting diode is coupled to the driving circuit through a first current path. The second OLED is coupled to the driving circuit through a second current path. The self-repair circuit interrupts the first current path and supplies the current to the second current path when the first organic light emitting diode has a defect.
Abstract:
A pixel for an organic light emitting diode (OLED) display is disclosed. One inventive aspect includes an organic light emitting diode, a first transistor, a first capacitor, a second transistor and a second capacitor. The first transistor is configured to control an amount of current flowing from a first power source to a second power source via the organic light emitting diode in response to a voltage of a first node. The first capacitor is connected to a data line and has a first terminal. The second transistor is connected to a second terminal of the first capacitor and a second node and is configured to be turned on when a scan signal is supplied to a scan line. The second capacitor is connected to the second and first nodes.
Abstract:
A gate driver includes: a pull-up circuit configured to pull up a gate output signal to a high voltage in response to a signal at a first node of the pull-up circuit; a first pull-down circuit configured to pull down the gate output signal to a low voltage in response to a signal at a second node of the first pull-down circuit; a second pull-down circuit configured to pull down the gate output signal to the low voltage in response to a signal at a third node of the second pull-down circuit; a first selection circuit configured to activate the first pull-down circuit and deactivate the second pull-down circuit based on a first selection signal; and a second selection circuit configured to activate the second pull-down circuit and deactivate the first pull-down circuit based on a second selection signal.
Abstract:
A gate driver includes: a pull-up circuit configured to pull up a gate output signal to a high voltage in response to a signal at a first node of the pull-up circuit; a first pull-down circuit configured to pull down the gate output signal to a low voltage in response to a signal at a second node of the first pull-down circuit; a second pull-down circuit configured to pull down the gate output signal to the low voltage in response to a signal at a third node of the second pull-down circuit; a first selection circuit configured to activate the first pull-down circuit and deactivate the second pull-down circuit based on a first selection signal; and a second selection circuit configured to activate the second pull-down circuit and deactivate the first pull-down circuit based on a second selection signal.
Abstract:
A display device includes a display panel, a data driver which provides data voltages to the display panel, and a controller which provides output image data to the data driver. The controller includes a data line memory which stores input image data for each pixel row of the display panel, an address line memory which stores addresses for the input image data, and a data serialize block which generates the output image data provided to the data driver by rearranging the input image data stored in the data line memory based on the addresses stored in the address line memory.
Abstract:
A gate driving circuit including a plurality of stages to respectively output a plurality of scan signals, an N-th stage of the stages includes: a shift register to output an N-th scan signal based on an (N−1)-th scan signal; and a sensing signal output block connected to the shift register and to output an (N−1)-th sensing signal for compensation of a pixel based on a sensing control signal and a data control signal, where N is an integer greater than 1.
Abstract:
A method of operating an organic light-emitting diode (OLED) display and an OLED display are disclosed. In one aspect, the method includes measuring an extent of degradation of the OLEDs and determining a power supply voltage increment based at least in part on the measured extent of degradation. The method further includes increasing a power supply voltage applied to the pixels by the determined power supply voltage increment and increasing the high data voltage and the low data voltage in proportion to the determined power supply voltage increment.