Abstract:
Provided is a display device. The display device comprises a substrate, and a plurality of sub-pixels disposed on the substrate and including alight emitting element and a sub-pixel circuit driving the light emitting element. The sub-pixel circuit comprises a driving transistor controlling a driving current flowing through the light emitting element, a first transistor and a second transistor connected in series between a first node, which is a drain electrode of the driving transistor, and a second node, which is a gate electrode of the driving transistor, to receive the same scan signal, and a gate auxiliary electrode disposed on a gate electrode of the first transistor or the second transistor. The gate auxiliary electrode is connected to the gate electrode of the first transistor or the second transistor.
Abstract:
A display device includes: a pixel unit including a plurality of pixels; a scan driver having a plurality of stages and configured to supply a scan signal to the pixel unit; and a light emission control driver having a plurality of stages and configured to supply a light emission control signal to the pixel unit, wherein a first transistor of a plurality of transistors included in at least one of the stages of the scan driver or the stages of the light emission control driver comprises: an active layer pattern on a base layer, and including a channel region forming a channel, and first and second regions on opposite sides of the channel region; and a gate electrode spaced apart from the active layer pattern with a first insulating film therebetween, and overlapping the channel region.
Abstract:
A thin film transistor substrate according to an exemplary embodiment of the present invention includes a semiconductor layer including metal disposed on an insulating substrate, a gate electrode overlapping the semiconductor layer, and a source electrode and a drain electrode overlapping the semiconductor layer, wherein the metal in the semiconductor layer comprises indium (In), zinc (Zn), and tin (Sn), and a molar ratio (R, R[mol %]=[In]/[In+Zn+Sn]/100) of indium (In) to the metals in the semiconductor layer is less than about 20%, and more specifically, the molar ratio (R, R[mol %]=[In]/[In+Zn+Sn]/100) of indium (In) of the metals in the semiconductor layer is about 5% to about 13%.