Abstract:
An induction heating type fusing device and an image forming apparatus including the fusing device. The fusing device includes a magnetic flux generator and a compressing roller outside a fusing belt, first and second fusing rollers and a nip guide inside the fusing belt. The compressing roller compresses against the first and second fusing rollers and the nip guide to form nips, while the fusing belt is disposed between the compressing roller and the first and second fusing rollers and the nip guide.
Abstract:
A hollow shielding structure for different types of circuit elements is provided. The hollow shielding structure includes at least one element mounted on a printed circuit board (PCB), a shield dam surrounding the at least one element, and a shield cover is configured to be electrically coupled to an upper portion of the shield dam and cover the at least one element, with a gap formed between the at least one element and the shield cover.
Abstract:
A refrigerator having an improved structure configured to increase the energy efficiency includes a main body provided with an inner case and an outer case, a storage compartment formed inside of the inner case, an insulation material provided between the inner case and the outer case to insulate the storage compartment and a flange having the anisotropy having different heat resistance distribution to insulate the storage compartment, together with the insulation material.
Abstract:
The present invention relates to a shape forming apparatus and a control method for the shape forming apparatus, wherein the shape forming apparatus may comprise a plurality of spray units which evenly spray forming materials having different colors from one another; and a shape forming unit in which a shape is formed from the evenly-sprayed forming materials having different colors from one another.
Abstract:
An object forming apparatus and a controlling method thereof are provided. The object forming apparatus includes an injector configured to inject an object forming material based on object data, a base part in which an object is formed through stacking of the injected object forming material, a sensor configured to detect a height of the object stacked on the base part, and a controller configured to control the injector based on a signal output from the sensor.
Abstract:
A terminal may be provided with a magnetic regenerator unit using a magnetocaloric effect of magnetocaloric materials and a magnetic cooling system having the same. By a circular magnetic regenerator structure capable of evenly flowing heat transfer fluid and magnetic field and the flow of the heat transfer fluid being changed in the same way, and a magnetic band having a relative permeability, similar to a relative permeability of the magnetic regenerator, high efficiency of a flux generator may be obtained while reducing torque of a rotator. Power consumption for driving may be reduced due to the reduction of the cogging torque, and the magnetic band may be manufactured at a low cost by using inexpensive iron powder.
Abstract:
A magnetic cooling apparatus may include a fixing module and a rotation module rotatably provided at the fixing module. The fixing module includes a plurality of magnetic regenerators and a thermal fluid supply apparatus allowing thermal fluid to exchange with the plurality of magnetic regenerators, and the thermal fluid supplying apparatus is configured to operate by the rotation module without an additional configuration, which enables the magnetic cooling apparatus to have a similar configuration.
Abstract:
A magnetic cooling apparatus having an improved structure in which effective heat exchange may be performed by a heat transfer fluid is provided. The magnetic cooling apparatus includes at least one magnetic regenerator allowing a heat transfer fluid to pass therethrough and provided with a magnetocaloric material, a magnet to apply a magnetic field to the magnetic regenerator, and at least one high temperature heat exchanger allowing heat to be dissipated by the heat transfer fluid containing heat received from the magnetic regenerator. The magnetic cooling apparatus includes at least one low temperature heat exchanger allowing heat to be absorbed by the heat transfer fluid, a pipe to connect the magnetic regenerator, the high temperature heat exchanger and the low temperature heat exchanger such that the heat transfer fluid circulates through the magnetic regenerator, the high temperature heat exchanger and the low temperature heat exchanger, and a fluid transport unit to circulate or reciprocate the heat transfer fluid.
Abstract:
A color converter layer is provided. The color converter layer includes a first light blocking member in which a plurality of pixel regions comprising a first pixel region and a second pixel region are disposed to be spaced apart from each other, a first color converter disposed in the first pixel region for converting and emitting incident light into a first color, a second color converter disposed in the second pixel region for converting and emitting the incident light into a second color different from the first color, and a second light blocking member that extends with a preset thickness and is formed on a surface of the first light blocking member, and blocks transmission of the incident light into an adjacent pixel region by partitioning the first pixel region and the second pixel region. The preset thickness may be greater than the thickness of the first light blocking member.
Abstract:
An electromagnetic interference shielding structure is provided. The electromagnetic interference shielding structure includes a shield pad and a shield can. The shield pad is configured to surround at least one circuit element mounted on a printed circuit board, and to be grounded to a ground pad formed on a printed circuit board. The shield can include an upper plate, and a sidewall extending from the upper plate and partly embedded in the shield pad.