Abstract:
Transistors having sulfur-doped zinc oxynitride channel layers, and methods of manufacturing the same, include a ZnON channel layer with sulfur content ratio with respect to a zinc content of from about 0.1 at % to about 1.2 at %, a source electrode and a drain electrode respectively formed on a first region and a second region of the channel layer, a gate electrode corresponding to the channel layer, and a gate insulation layer between the channel layer and the gate electrode.
Abstract:
A thin film transistor (TFT) and a method of driving the same are disclosed. The TFT includes: an active layer; a bottom gate electrode disposed below the active layer to drive a first region of the active layer; and a top gate electrode disposed on the active layer to drive a second region of the active layer. The TFT controls the conductivity of the active layer by using the bottom gate electrode and the top gate electrode.
Abstract:
Provided are fluorine-containing zinc targets, methods of fabricating a zinc oxynitride thin film by using the zinc targets, and methods of fabricating a thin film transistor by using the zinc oxynitride thin film. The methods include mounting a fluorine-containing zinc target and a substrate in a sputtering chamber, supplying nitrogen gas and inert gas into the sputtering chamber, and forming a fluorine-containing zinc oxynitride thin film on the substrate.
Abstract:
A solution composition for forming an oxide semiconductor includes a metal oxide precursor, and one of a metal thioacetate and a derivative thereof.
Abstract:
Oxide thin film, electronic devices including the oxide thin film and methods of manufacturing the oxide thin film, the methods including (A) applying an oxide precursor solution comprising at least one of zinc (Zn), indium (In) and tin (Sn) on a substrate, (B) heat-treating the oxide precursor solution to form an oxide layer, and (C) repeating the steps (A) and (B) to form a plurality of the oxide layers.