Abstract:
An analog-digital converter includes a count code generator to receive a code generation clock signal from a clock signal generator and to output a count code according to the code generation clock signal, a latch to latch the count code, an operating circuit to generate a count value of the count code and to output a digital signal based on the count value, and a transfer controller to transfer the count code from the latch to the operating circuit. The transfer controller determines whether to transfer the count code according to a logic level of a count enable clock signal generated from the clock signal generator.
Abstract:
An image sensor includes a pixel array including a pixel array comprising a first pixel and a second pixel which are electrically connected to a first column line, a row driver configured to receive a clamp voltage and a selection voltage, select the first pixel based on the clamp voltage and select the second pixel based on the selection voltage. A voltage of the first column line is determined based on a higher voltage among a first output voltage of the first pixel and a second output voltage of the second pixel during a read operation of the second pixel.
Abstract:
A modem chip includes a processor configured to generate instructions, a timing controller configured to respectively generate control signals corresponding to the instructions at the execution times of the instructions, and a plurality of intellectual property blocks, each configured to operate in response to a corresponding control signal of the control signals. The timing controller includes a heap sorting circuit configured to sort the instructions according to execution orders of the instructions based on heap sorting using the execution times, a reference counter configured to generate a reference time, and a signal generator configured to generate a control signal corresponding to a current instruction when the reference time matches the execution time of the current instruction having a highest execution order among the instructions.
Abstract:
An electronic circuit includes a unit pixel, a first clamp circuit, and a second clamp circuit. The unit pixel outputs a voltage having an output voltage level at a first output voltage level in a first time interval and at a second output voltage level in a second time interval different from the first time interval. The first clamp circuit is configured to clamp the output voltage level from the unit pixel to a first voltage level responsive to the first output voltage level being not greater than the first voltage level in the first time interval. The second clamp circuit is configured to clamp the output voltage level from the unit pixel to a second voltage level responsive to the second output voltage level being not greater than the second voltage level in the second time interval.
Abstract:
An image sensor includes a pixel array, a plurality of comparators, a plurality of counters and a plurality of synchronization circuits. The pixel array includes a plurality of pixels configured to generate analog signals by sensing incident light. The comparators generate comparison signals by comparing the analog signals with a reference signal. The counters are grouped into a plurality of counter groups. Each of the counters generates digital signals corresponding to the analog signals by counting, the counting terminated by the comparison signals. Each of the synchronization circuits synchronizes input clock signals to a source clock signal to provide synchronized input clock signals to each of the counter groups.
Abstract:
An image sensor supporting a normal sampling mode and a 1/N sampling mode for transmitting image data detected by a plurality of unit image sensors and stored in a plurality of latch circuits to a data processor using a plurality of transmission lines, wherein N is a natural number greater than 2, the image sensor including a horizontal address generator configured to generate horizontal addresses corresponding to addresses of the plurality of latch circuits, and to generate, based on the horizontal addresses, a first channel selection control signal and a second channel selection control signal of which activation times at least partially overlap.
Abstract:
A binary-to-Gray converting circuit includes a buffer unit and a conversion unit. The buffer unit generates a data code of n bits in response to a power supply voltage and a second binary bit signal through an nth binary bit signal except for a first binary bit signal corresponding to a least significant bit of a binary code of n bits. The conversion unit generates a Gray code of n bits based on the binary code and the data code, and generates a kth Gray bit signal of the Gray code by latching a kth data bit signal of the data code in response to a kth binary bit signal of the binary code. A logic level of the kth Gray bit signal is determined corresponding to a logic level of the kth data bit signal.
Abstract:
An image sensing system includes a pixel array, an analog-to-digital converter circuit, and an average calculator. The analog-to-digital converter circuit converts a first pixel signal to first pixel data and converts a second pixel signal to second pixel data. The average calculator generates a first average bit based on a first bit of the first pixel data and a first bit of the second pixel data during a first time and generates a second average bit based on a second bit of the first pixel data and a second bit of the second pixel data during a second time.
Abstract:
An image sensor compensates for noise. The image sensor includes a pixel array that includes a common monitor output line, a first monitoring pixel outputting a first monitoring signal, a second monitoring pixel outputting a second monitoring signal, and an active pixel configured to output a sensing signal based on an incident light. The image circuit also includes a binning circuit that receives the first and second monitoring signals through the common monitor output line and generates an average monitoring signal by performing binning on the first and second monitoring signals, and an analog-to-digital converter that detects an alternating current (AC) component of the average monitoring signal and couples the sampled AC component of the average monitoring signal to the sensing signal, thereby compensating for noise.
Abstract:
An image sensing system includes a pixel array, an analog-to-digital converter circuit, and an average calculator. The analog-to-digital converter circuit converts a first pixel signal to first pixel data and converts a second pixel signal to second pixel data. The average calculator generates a first average bit based on a first bit of the first pixel data and a first bit of the second pixel data during a first time and generates a second average bit based on a second bit of the first pixel data and a second bit of the second pixel data during a second time.