Abstract:
An electronic apparatus which acquires input data to be input into a TTS module for outputting a voice through the TTS module, acquires a voice signal corresponding to the input data through the TTS module, detects an error in the acquired voice signal based on the input data, corrects the input data based on the detection result, and acquires a corrected voice signal corresponding to the corrected input data through the TTS module.
Abstract:
A method, medium, and system decoding and/or encoding multiple channels. Accordingly, down-mixed multiple channels can be decoded/up-mixed to a left channel and a right channel during a first stage, thereby enabling a high quality sound output even in scalable channel decoding.
Abstract:
A method for controlling an electronic device includes obtaining a text, obtaining, by inputting the text into a first neural network model, acoustic feature information corresponding to the text and alignment information in which each frame of the acoustic feature information is matched with each phoneme included in the text, identifying an utterance speed of the acoustic feature information based on the alignment information, identifying a reference utterance speed for each phoneme included in the acoustic feature information based on the text and the acoustic feature information, obtaining utterance speed adjustment information based on the utterance speed of the acoustic feature information and the reference utterance speed for each phoneme, and obtaining, based on the utterance speed adjustment information, speech data corresponding to the text by inputting the acoustic feature information into a second neural network model.
Abstract:
An electronic apparatus and a controlling method thereof are provided. The electronic apparatus includes a microphone; a memory configured to store a text-to-speech (TTS) model and a plurality of evaluation texts; and a processor configured to: obtain a first reference vector of a user speech spoken by a user based the user speech being received through the microphone, generate a plurality of candidate reference vectors based on the first reference vector, obtain a plurality of synthesized sounds by inputting the plurality of candidate reference vectors and the plurality of evaluation texts to the TTS model, identify at least one synthesized sound of the plurality of synthesized sounds based on a similarity between characteristics of the plurality of synthesized sounds and the user speech, and store a second reference vector of the at least one synthesized sound in the memory as a reference vector corresponding to the user for the TTS model.
Abstract:
An electronic apparatus which acquires input data to be input into a TTS module for outputting a voice through the TTS module, acquires a voice signal corresponding to the input data through the TTS module, detects an error in the acquired voice signal based on the input data, corrects the input data based on the detection result, and acquires a corrected voice signal corresponding to the corrected input data through the TTS module.
Abstract:
An electronic apparatus which acquires input data to be input into a TTS module for outputting a voice through the TTS module, acquires a voice signal corresponding to the input data through the TTS module, detects an error in the acquired voice signal based on the input data, corrects the input data based on the detection result, and acquires a corrected voice signal corresponding to the corrected input data through the TTS module.
Abstract:
A method for controlling an electronic device includes obtaining a text, obtaining, by inputting the text into a first neural network model, acoustic feature information corresponding to the text and alignment information in which each frame of the acoustic feature information is matched with each phoneme included in the text, identifying an utterance speed of the acoustic feature information based on the alignment information, identifying a reference utterance speed for each phoneme included in the acoustic feature information based on the text and the acoustic feature information, obtaining utterance speed adjustment information based on the utterance speed of the acoustic feature information and the reference utterance speed for each phoneme, and obtaining, based on the utterance speed adjustment information, speech data corresponding to the text by inputting the acoustic feature information into a second neural network model.
Abstract:
An electronic apparatus, based on a text sentence being input, obtains prosody information of the text sentence, segments the text sentence into a plurality of sentence elements, obtains a speech in which prosody information is reflected to each of the plurality of sentence elements in parallel by inputting the plurality of sentence elements and the prosody information of the text sentence to a text to speech (TTS) module, and merges the speech for the plurality of sentence elements that are obtained in parallel to output speech for the text sentence.
Abstract:
Adaptive time/frequency-based audio encoding and decoding apparatuses and methods. The encoding apparatus includes a transformation & mode determination unit to divide an input audio signal into a plurality of frequency-domain signals and to select a time-based encoding mode or a frequency-based encoding mode for each respective frequency-domain signal, an encoding unit to encode each frequency-domain signal in the respective encoding mode, and a bitstream output unit to output encoded data, division information, and encoding mode information for each respective frequency-domain signal. In the apparatuses and methods, acoustic characteristics and a voicing model are simultaneously applied to a frame, which is an audio compression processing unit. As a result, a compression method effective for both music and voice can be produced, and the compression method can be used for mobile terminals that require audio compression at a low bit rate.
Abstract:
A method, medium, and system generating a 3-dimensional (3D) stereo signal in a decoder by using a surround data stream. According to such a method, medium, and system, a head related transfer function (HRTF) is applied in a quadrature mirror filter (QMF) domain, thereby generating a 3D stereo signal by using a surround data stream.